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=�3��31 Japan Advaned Institute of Siene and Tehnoloy2 �!���������������2 SPARX Asset Management Co., Ltd.Abstrat: In �nanial markets, sudden unexpeted hanges our frequently. We propose anew foreast method based on paired evaluators onsisting of the stable evaluator and the reativeevaluator that is good at deteting and adapting to the onseutive market hanges. We ondut abak-testing using �nanial data in US. The experimental results show that our method is e�etiveand robust even against the late-2000s reessions.1 IntrodutionTo ope with risks in volatile �nanial markets,portfolio theory has been used as a standard tool formore than thirty years. Modern portfolio theory isbased on apital asset priing model (CAPM) estab-lished by Sharpe [17℄, Lintner [14℄, and Mossin [15℄. Amain harateristi is an emphasis on a prie disov-ery proess rather than priing itself. In the CAPM, atheoretially appropriate required rate of return of anasset is obtained aording to a onsideration of theexpeted return of the market, the expeted return ofa theoretial risk-free asset and non-diversi�able risk.Hene, the non-diversi�able risk is used as a singlefator to ompare the exess returns of a portfoliowith the exess returns of the entire market that en-tails the set of optimal equities for a portfolio. Morereently, Fama and Frenh [6℄ propose two risk fa-tors, value and size, and Carhart [4℄ proposes a fator,momentum that are widely aepted to redue someexeptional ases of the CAPM:� momentum: historial prie inrease for 12 months,� value: book-to-market ratio,� size: size of a �rm (market apitalization).Even though several fators have been proposed topredit future market movements, a persistent fator�O��� "�#&'()*'+*' ,-&'./&E-mail: k439bk439b�gmail.om

has not found yet. Hene, a key issue for investorsbased on fators is to selet the best fator whih sud-denly and signi�antly hanges over time.In data mining and mahine learning, several meth-ods have been proposed to deal with hanges overtime in unforeseen ways known as onept drift. Inthis paper, we view quik hanges of �nanial mar-kets as onept drift problems and propose a solutionfor these problems. A main diÆulty to deal with on-ept drift is the greater number of observations doesnot simply lead to the inrease of foreast aurayunlike phenomena governed by laws of nature.Researhes dealing with onept drift are exten-sive suh as determination of window size [13, 18℄,hange detetions [2, 3, 8, 9℄, and adaptive ensem-bles [11℄. Our researh is most losely related tothe determination of window size for a predition.In this domain, there are two main streams to opewith onept drifts, dynamially hanging the windowsize [13, 18℄ or using two �xed window sizes [1, 16℄. Inthe former stream, as soon as they observe a new data,they investigate onsistenies with the histories. Onethey suspet an ourrene of onept drift, they ad-just their window sizes. In the latter stream, they usepaired lassi�ers to ontrol two types of window size.A ommon point in the researhes in both streams isthat they adjust window size for lassi�ation prob-lems.In ontrast, we propose a new foreast method thatruns a set of base foreast having di�erent window
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sizes of referene histories to generate foreast val-ues. Among the base foreasts, the most auratebase foreast on bak-testing is seleted by an eval-uator. Hene, the best window size in the historialdata is seleted by our method instead of adjustingwindow size like existing work above. In order toope with onept drifts, we use two types of eval-uators, a stable evaluator and a reative evaluator,similarly to the existing researhes of the paired las-si�ers [1, 16℄. While the stable evaluator is used asa default evaluator whih is supposed to be appro-priate for versatile situations, the reative evaluatoris sensitive to hanges. If performanes of the rea-tive evaluator exeeds ones of the stable evaluator,our method swithes to use a base foreast seletedby the reative evaluator. With respet to deisionsfor swithes, we use learning algorithm aording tothe histories of performanes. A main harateristiof our proposing method is robustness against on-seutive ourrenes of onept drifts. We examine abak-testing using atual �nanial data in US in orderto demonstrate how our proposing method performsompared with other existing methods.For a predition, we avoid an investor !s intuitionto selet a fator to evaluate a performane of ourforeasting method purely. In addition, we do not relyon the external data suh as maro eonomi statistisin order to be independent from noises ontained inthe external data.The rest of this paper is organized as follows. InSetion 2, we speify the researh problems using a-tual market data. In Setion 3, we detail our propos-ing foreasting method. Some key harateristis ofour method are shown with some examples in Se-tion 4. In Setion 5, we examine a bak-testing andompare the performanes of our method with onesof other representative approahes. In Setion 6, weonludes this paper.2 Fund Operation in Volatile Fi-nanial MarketIn this setion, we detail a fator seletion prob-lem in �nanial markets using monthly historial fa-tor data in US equities market whih an be obtainedfrom [7℄. We fous on three fators, momentum, value,and size as desribed in the previous setion. For aomprehension of the e�etiveness of fators, we al-ulate fator spread return between the top 10 % and
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? 1: Cumulative Monthly Spread Return of FatorInvestments Classi�ed by Deadesthe bottom 10 %. Among these fators, we investigatea method to predit the most e�etive fator in eahmonth. In Figure 1, we illustrate umulative monthly10 perentile spread return on these fators in US eq-uity markets from 1964 to 2009 lassi�ed by deades.If a umulative spread return is inreased onstantlyand sharply, this fator is onsidered to be e�etive.In addition, a onstant sharp derease is also an e�e-tive whih works for ontrarians. Considering thesepoints, we observe that momentum has been well-performed until 1990s; however it utuates heavilyin 2000s. Size fator is onstantly dereased in 1960s,1970s and 2000s. This negative sign is a desired phe-nomenon, sine smaller size ompanies are expetedto grow faster as proposed in Fama and Frenh [6℄.Throughout the years, e�etive fators hange overtime quikly and sharply. In the �gure, we illustratea ase to invest equally on these fators that is av-erage investment, (momentum + value� size)=3, asa benhmark purpose. While the average investmentdoes not make a huge loss entirely, it looses some op-portunities to gain greater pro�ts. We are interestedin developing a foreasting method that gains greaterpro�ts without inreasing risks of huge losses.In ontrast to this stati approah, our interest is todevelop a foreasting method that predits the moste�etive fator, whih may hange over time. As we
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are able to omprehend from the historial data inthe �gure, the most e�etive fators are not onstantover time. DiÆulties with respet to the preditionof the most e�etive fators are mainly aused by thefollowing two reasons. First, the prie disovery pro-ess is not onsistent over time for eah fator. Somefators may be rapidly e�etive, but others may taketime. Seond, an e�etive fator an be either for-ward or ontrary. Hene, foreasting methods areneessary to predit both the largest absolute valueof fators and their signs. Under suh a dynamiallyhanging environment, key questions are how to iden-tify quik market hanges and how to adapt to thesehanges appropriately. Notie that these hanges arenot unique. In some ases, the most e�etive fator issuddenly swapped by another fator. In other ases,the swap is gradually ourred. An important aspetis that the hange types are not �xed. Hene, a hal-lenge is to develop a foreast model whih is robustagainst some di�erent types of hange types. In thefollowing setion, we propose our foreasting methodonsidering these aspets.3 Proposing MethodIn this setion, we detail our proposing foreastingmethod, paired evaluators method (PEM), whih isadaptive to market hanges.3.1 PreliminariesLet T = f�T; : : : ;�1; 0; 1; : : : ; Tg be the set of dis-rete time and t 2 T be a ertain time. We all t = 0as the urrent time. We denoteH = ft 2 T : t < 0g asthe set of historial periods. Let Xt 2 <z be a vetorin z-dimensional feature spae observed at time t 2 Tand yt 2 < be its orresponding label to be predited.We refer to Xt as an instane, a pair (Xt; yt) as alabeled instane, instanes (X�T ; : : : ; X�1) as histor-ial dataXH , and an instaneX0 as a target instane.As time is inremented, the number of historial datais inreased and the urrent time is shifted. Notiethat a target instane X0 is not observed until timeis inremented.

3.2 An Overview of Our Proposing Fore-asting MethodIn this setion, we present an overview of our fore-asting method. We use several di�erent base fore-asts and selet a base foreast whih is expeted tobe the best foreast aording to the past experienes.We refer a way to selet a base foreast as an evalua-tor. A key harateristi of our method is an evalua-tion of performanes of evaluators.Let f be a base foreast. Let F be a set of baseforeast. Let us denote f i as the i-th foreast amongF and we also denote I as the set of foreasts. Wedenote Æit = yt � f i(XHt ) as a foreast error at time twhih is obtained at time t+ 1.Our proposing foreast method proposes the opti-mal base foreast f î among a set of base foreastsF without severe parameter tunings. As depitedin Figure 2, this method onsists of four parts: (1)pre-proessing, (2) base foreast proposal aordingto evaluator, (3) evaluator seletion, and (4) foreast-ing. In part (1), past foreast errors Æ for all baseforeast are alulated, respetively.In part (2), we use paired evaluators that are a sta-ble evaluator and a reative evaluator. Eah evalua-tor proposes the expeted best base foreast based ondi�erent weights for evaluations. Let w be a weightvetor of foreast errors. Let ~i be the ~i-th base fore-ast whih is expeted to be the best base foreast.Multiplying a weight vetor to foreast errors, we areable to ompare performanes of base foreasts andwe are also able to obtain the estimated best baseforeast as follows:~i = argmini2I Xt2HwtÆit (1)where wt is an element of the weight vetor. Aord-ing to Equation (1), a base foreast that minimizesthe weighted errors is estimated as the best base fore-ast. Here, let us denote g as an evaluator that seletsthe optimal base foreast based on Equation (1).If a weighting vetor has heavier weights for morereent errors, it prefers short-term foreast auraywhih is a reative evaluator gR. Contrary, the atweight vetor prefers long-term foreast auray whihis a stable evaluator gS . Long-term auray is pre-ferred in general. However, right after a onept drift,the long history of foreast errors may not tell a properforeast. Aording to these errors and evaluators, abase foreast is proposed as shown in Equation (1).
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? 2: Struture of Paired Evaluator MethodLet ~iSt be the expeted best base foreast aording tothe stable evaluator whih is ~iSt = gS(ÆHt ), where Æ =fÆigi2I . Similarly, the expeted best base foreastaording to the reative evaluator is ~iRt = gR(ÆHt ).Sine the proposed base foreast depends on thesetting of the evaluator, a entral issue is how to se-let evaluators whih is part (3) of our method. Withrespet to the seletion, there are some key ideas be-hind our method. First, the stable evaluator workswell under versatile situations. It is used as a defaultevaluator. Seond, the stable evaluator may not workwell right after a poor performane. If the reativeevaluator has performed better than the stable eval-uator at the similar ases in the past, our methodswithes to use the reative evaluator. Finally, if pastexperienes are inonsistent, reent experienes havea greater importane for deision makings. Consid-ering these aspet, we selet an evaluator based on alearning-algorithm. Let � be an evaluation funtionof evaluators that assigns a degree of superior evalu-ator on a performane of the stable evaluator. Basedon this evaluation funtion, we obtain the expeted

best base foreast î suh that:ît = 8<:~iSt ; if �t(Æ~iSt�1t�1 ) � �;~iRt ; otherwise: (2)where � is a threshold parameter. We detail how theevaluation funtion is updated aording to the pastexperienes in the following setion.One an evaluator is seleted in part (3), part (4)is diretly indued and we obtain the best performingbase foreast f î and its foreast value f î(XHt ). In thefollowing setion, we detail part (3) of our proposingforeasting method.3.3 Update Rules of the Evaluation Fun-tionThe evaluation funtion of evaluators is updated a-ording to a learning-based approah that onsists ofthree types of update rules: (i) initialization, (ii) aperformane of an evaluator exeeded a performaneof another evaluator, and (iii) no di�erenes on per-formanes between two evaluators. Regarding to the�rst update rule, we set �(Æ) = 0 for all Æ. The se-ond rule is for ases where one evaluator performs
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better than another. One atual value yt�1 is real-ized at time t, we obtain foreast errors of the sta-ble evaluator and the reative evaluator, Æ~iSt�1t�1 andÆ~iRt�1t�1 , respetively. If the stable evaluator performsbetter than the reative evaluator, i.e., Æ~iSt�1t�1 < Æ~iRt�1t�1 ,�t(Æ) := �t(Æ) + � for all Æ � Æ~iSt�1t�1 , where � > 0 isan update oeÆient. Contrary, if the stable evalu-ator performs worse than the reative evaluator, i.e.,Æ~iSt�1t�1 > Æ~iRt�1t�1 , �t(Æ) := �t(Æ)�� for all Æ � Æ~iSt�1t�1 . Thethird rule is for ases where both evaluators performequal. In suh ases, the e�ets of past experienesare redued by a reduing oeÆient 0 � � � 1 asfollows, �t(Æ) := ��t(Æ) for all Æ.4 Paired Evaluators Method andDrift TypesIn this setion, we show some simple examples toshow how our proposing foreasting method, pairedevaluators method (PEM), deals with typial drifttypes, sudden drift, inremental drift, gradual drift,and reurring ontexts. Notie that a single windowsize approah has a problem to deal with these drifttypes. While smaller window sizes tend to �t for sud-den drift and inremental drift, they are too sensitivefor gradual drift and reurring ontexts. It is signif-iant to swith to an appropriate window size thatorresponds to an observed drift type. In order toswith the window size, PEM uses two types of eval-uators, the stable evaluator and the reative evalua-tor, as we have shown in the previous setion. Thisapproah, partiularly, works for gradual drift and re-urring ontexts as we show in some examples.We prepare the set of arti�ial data that harater-izes typial drift types. There are two time series thatare either 100� � or 20� � where � is randomly drawnfrom uniform distribution ranging [�5; 5℄. A key taskis to predit a series that will be the greater value inthe following time. Regarding to PEM, we use threebase foreasts, 3-month average, 6-month average and12-month average; we set an update oeÆient as 1,a dereasing oeÆient as 0, a threshold as 0. Asfor parameter of evaluators, we use 12 months eq-uitable weights w = f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g fora stable evaluator and 3 months equitable weightsw = f1; 1; 1g for a reative evaluator.At �rst, we show examples of sudden drift and in-remental drift in Figure 3. The top graphs show

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0

V
al

ue

Series 1
Series 2

Sudden Drift

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0

V
al

ue

Series 1
Series 2

Incremental Drift

0 10 20 30 40 50
0

20
40

60
80

10
0

12
0

V
al

ue
Stable
Reactive

Stable and Reactive Evaluator

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0

V
al

ue

Stable
Reactive

Stable and Reactive Evaluator

? 3: Sudden Drift and Inremental Driftseries 1 and 2 of the respetive drift patterns. Forboth ases, series 1 is to be predited at the begin-ning, series 2 swaps at ertain time, and series 2 isto be predited after the swap. While sudden driftours at time 39, inremental drift starts hangingat time 33, takes over observed at time 37, and endshanging at time 39. The bottom graphs show perfor-manes of paired evaluators. For both drift patterns,both evaluators have exatly the same performanes.They require the minimum time, three time periods,to orrespond to the drifts. Di�erenes between thestable evaluator and the reative evaluator are ob-served if drifts our more frequently.Next, we show examples of gradual drift and re-urring ontexts in Figure 4. The top graphs showseries 1 and 2. For both ases, series 1 is to be pre-dited at the beginning and sudden hanges our fre-quently. While ourrene of swaps beomes morefrequent over time in gradual drift, swaps our yli-ally and randomly in reurring ontexts. In suhases, some inonsistenies of past experienes ourbetween the stable evaluator and the reative evalua-tor as we show in the middle of the graphs. In someases, the past experiene works for a good foreast.If the past experienes work good, PEM tends to fol-low suh experienes. In the bottom graphs, we showdi�erene of performanes of PEM and the stable eval-uator. PEM tends to exeed the performane of the
24
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? 4: Gradual Drift and Reurring Contextsstable evaluator if one evaluator works better thananother in onseutive times.In reality, it is diÆult to know or identify driftpatterns before ourrenes. In the following setion,we use atual �nanial data to show performanes ofPEM onsidering suh diÆulties.5 Experimental ResultsIn this setion, we show performanes of our propos-ing foreasting method based on a bak-testing usingFama-Frenh �nanial data whih is desribed in Se-tion 2. For a benhmark purpose, we ompare withtwo representative foreasting methods with dynamiforeast window size, Competing Windows Algorithm(CWA) and FLORA.CWA adjusts the size of foreast windows aord-ing to harateristis of historial data proposed byLazaresu et al. [13℄. If a new observation is on-sistent over time, this algorithm uses larger windowssize in order to inrease foreast auray with an ex-petation of no onept drift ourrene. Otherwise,it uses a smaller window size to deal with oneptdrifts. In order not to fous too muh on a par-tiular window size, it uses three types of windows,small-medium-large, that are dynamially hanging.For a foreasting, the most aurate foreast is used

among the foreasts generated from the three win-dows. FLORA is a representative learning systemthat deals with reurring ontexts with its dynami-ally hanging window size proposed by Widmer andKubat [18℄. While every step FLORA observes a newdata, it searhes relevant historial data and lassi�esthe searhed data into positive data, negative dataand both type data. Based on these data, FLORAgenerate foreast. Aording to results, FLORA up-dates its soure of onepts: either addition of a newonept into the system or disard of the old onept.First, we desribe some on�gurations of parame-ters used for PEM and two well-known dynami win-dow size methods, CWA and FLORA. Then, we showexperimental results.With respet to PEM, we use 6 basi foreasts, 3-month top mode, 6-month, 9-month, 12-month, 18-month, 24-month average. 3-month top mode seletsthe most frequent fator that performs the best amongthree months. We use smoothed data for averagesin whih highly e�etive points exeeding 1.5 stan-dard deviations are redued. As for parameter ofevaluators, we use 12-month equitable weights w =f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g for a stable evaluator and5-month dereasing weights w = f0:03125; 0:0625;0:125; 0:25; 0:5g. With respet to oeÆients, we setan update oeÆient as 1, a dereasing oeÆient as0:005, a threshold as 0.Regarding to CWA, there are three types of win-dows size, small-medium-large, with default windowsizes, 3, 6 and 12-month, respetively. If a distanebetween the latest instane and the historial instanesis within a onsistent oeÆient 3.88, whih is 2 stan-dard deviation of the sum of the absolute instaneswithin the �rst 12 months, the medium window size isenlarged up to 11-month and the large window size isthe double size of the medium window size. If onsis-tenies are persistent more than 12 months, the largewindow orresponds to the size of persistene. Basedon averages of three window sizes, the best fator isalulated. The type of the window size is seletedaording to the performane of the previous month.With respet to FLORA, we tuned the algorithmin order to deal with our test data as follows. Welassify instanes into 24 states that onsist of thebest fator and the seond best fator with signs. Thestate patterns are to alloate the following two f thebest fator with a positive sign, the best fator witha negative sign g and f the seond best fator with apositive sign, the seond best fator with a negative
25



sign g in the three positions that are 2 � 2 � 2 �3. One FLORA observes a new instane, it looksup the same state in the past. Among the mathedstate, it alulates the most frequent top fator in thefollowing month whih is used for a predition in thismonth. We set default searh periods as 36 months.If the mathed state is less than a minimum numberof math 5, it grows the number of windows up to48 months. If the auray is greater than 50 % andthe reent result is inaurate, redues window size20 % where the minimum window size is 24 months.Otherwise, keep the same window size as the previousmonth.Now, we show the experimental results. We depitthe umulative performanes of the three models las-si�ed by deades in Figure 5. Aording to the exper-iment, PEM performs better than the other two mod-els in most of time. An important aspet to evaluateperformanes is persisteny of growth. In most time,PEM ontinuously performs well. While 1970s, theearly 1980s, the early 1990s, and the early 2000s arerelatively easy periods aording to the average per-formane, PEM is quite stable. Even though the restof periods are not easy, it performs good due swithesof evaluators e�etively during this periods. Surpris-ingly, growth during this period is quite remarkablethat inludes the �nanial risis of 2008-2009. Keyreasons are (i) PEM quikly adapt to the drift whihis the reverse of momentum, and (ii) This works on-seutively.CWA also performs well similarly to PEM. How-ever, in the middle of 1990s, it looses its ontrol fora while. A disadvantage of CWA is a hange of win-dow size is one even though they have three sizes ofwindows. Hene, it may take time to searh an ap-propriate window size. With respet to FLORA, per-formanes are not good dynamially hanging envi-ronments suh as the middle of 1990s and 2000s. Theperformane of FLORA is good if there are many sam-ple data in the past. However, in our data set, thisis not always true. Similarly, paired learner in [1, 16℄is not implemented in this experiment, sine a rea-tive learner is not eÆient with a small number ofreferene periods with our data.6 ConlusionsIn this paper, we have introdued our foreastingmethod, paired evaluators method, whih tends to im-
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? 5: Bak-testing Results of Cumulative Monthly 10Perentile Spread Return of Portfolios Classi�ed byDeadesprove foreast performanes for onseutive oneptdrift patterns, suh as gradual drift and reurring on-texts. In our method, a set of base foreasts is usedfor a predition whih is seleted by evaluators. Weuse paired evaluators, a stable evaluator and a re-ative evaluator. A seletion of evaluator is based onlearning algorithmwhih learns the past performanesof evaluators. By learning, paired evaluators methodontinuously attempts to detet an alternative evalua-tor to improve foreast auray. This approah suitsfor onseutive onept drift patterns.We have introdued a methodology to deal with a�nanial investment problem, a fator seletion prob-lem, using onept drift solutions. Experimental re-sults show that our proposing method has disoverede�etive fators more eÆiently than the other tworepresentative methods, CWA and FLORA, whihhange the foreast window size dynamially. Ourmethod is robust against many diÆult irumstanesinluding the late-2000s reession.In a broader sense, paired learners for online lassi-�ations, suh as paired learners having two di�erentwindow sizes for lassi�ations based on naive Bayesapproah [1℄ and Todi (two online lassi�ers systemfor learning and deteting onept drift) based on a
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statisti test [16℄, are similar to our approah. Theyuse paired lassi�ers to ontrol stability and reativ-ity for hanges over time. While they diretly set thewindow size on lassi�ers, whih is �xed, in our ap-proah, window sizes are set by respetive base fore-asts instead of evaluators. Hene, our approah usesmultiple window sizes for a set of foreasts and a fore-ast having the most appropriate window size tends tobe seleted by evaluators. In our experiments, thesepaired learners for lassi�ations are not used, sineour experimental data does not have similar featuresin short periods.In the �nanial investment problem, we have fo-used on a seletion of the best fator. This is not arestrition in pratie. In the future, we onsider themethod to set the most appropriate weights for thethree fators.
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