
遺伝的アルゴリズムを用いたポートフォリオ最適化の最新発達
Advances in Portfolio Optimization by Genetic Algorithms

アランニャ　クラウス 1 ∗ 　 伊庭　斉志 1

Claus Aranha1 Hitoshi Iba1

1 東京大学電気系工学学科
1 University of Tokyo, Department of Electrical Engineering

Abstract: Porfolio Optimization is an important problem for financial engineering. It consists of
finding out the best investment weights for a large group of assets, so that the Expected Return of
those assets is maximized and the specific risk of the portfolio is minimized. This problem can be
modeled as a Parameter Optimization problem, and Genetic Algorithms have shown better results
every year. In this paper we review recently proposed techniques to optimize Financial Portfolio
using Historical Price values, compare them, and draw up proposals about how to improve these
results even further.

1 Introduction

The Portfolio Optimization problem consists of divid-
ing an amount of capital between multiple assets in
order to maximize the return, and minimize the risk
of the investment.

Investment Portfolios are used by financial insti-
tutions in the management of long term investments,
like savings accounts, retirement funds, etc. When
real life large data sets and constraints are added,
though, this becomes a tough problem that cannot
be solved by numerical methods.

Because of this, the use of computational heuris-
tics like neural networks and evolutionary algorithms
has been an active topic of research. In particular,
Genetic Algorithms is one of the most popular ap-
proaches recently. This popularity is partly because
it is very easy to represent a Portfolio as a real val-
ued array, and use that array as the genome in the
Genetic Algorithm.

In the recent years, we have seen an amazing num-
ber of ideas and projects regarding the use of Evo-
lutionary Algorithms for the Portfolio Optimization
problem. In this paper we will take a closer look at the
most significant works published in the previous two
years, drawing some comparisons and seeing where
they complement each other, and where extra work is
still needed.

The goal of this work is to allow the portfolio re-
searcher to identify new paths in need of study, and
for the industry expert to get up to speed with the
state-of-the-art techniques for this important finan-
cial problem.
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2 The Portfolio Problem

The resource allocation problem is a traditional op-
timization problem, which consists of distributing a
limited “resource” to a number of “jobs”, in order to
satisfy one or more utility functions [8].

The Portfolio Optimization problem falls in this
category. The limited resource is the capital available
for investment, and the jobs are the varied assets in
which this capital can be invested (for example, com-
pany stock or foreign currency. The utility functions
in this problem are the Portfolio Estimated Return,
to be maximized, and the Portfolio Risk, to be mini-
mized.

The model for the Portfolio Optimization problem
was formally proposed by Markowitz [10]. Markowitz’s
Portfolio Model could be solved by numerical meth-
ods, like Quadratic Programming [15].

However, when adding real world constraints to
the problem (for example, large number of assets, re-
strictions to the values of weights, trading costs, etc),
the search space becomes large and non-continuous,
and unsolvable by numerical methods. This is what
motivates the use of Search heuristics like Evolution-
ary Computation to solve Portfolio Optimization prob-
lems in real world conditions.

2.1 The Markowitz Model

A portfolio P as a set of N real valued weights (w0, w1, ...wN )
which correspond to the N available assets in the
market. These weights must obey two basic restric-
tions [15]: The total sum of the weights must be equal
to one; and all weights must be positive.

The utility of a portfolio is measured by its Esti-
mated Return and its Risk. It is calculated as:

RP =
N∑

i=0

Riwi (1)
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Figure 1: Risk-return projection of candidate port-
folios. The search space is bounded by the Efficient
Frontier. Sharpe ratio is the angle of the line between
a portfolio and the risk-free rate.

Where N is the total number of assets, Ri is the given
estimated return of each asset, and wi is the weight
of each asset in the portfolio.

The risk of an asset is given as the variance of its
return over time (variability). The risk of the portfolio
is defined as:

σp =
N∑

i=0

N∑
j=0

σijwiwj (2)

Where σij , i 6= j is the covariance between i and j.
While the risk is usually stated as the variance of the
return of a given asset, there are other definitions of
risk that have been used to bias the resulting port-
folios towards certain kinds of investment strategies.
For other risk metrics, see the works of Harish[14] and
Shu[12].

These two utility measures can be used separately
to determine the optimal portfolio, or they can be
combined. The Sharpe Ratio measures the trade off
ratio between risk and return for a portfolio, and is
defined as follows:

Sr =
RP − Rriskless

σp
(3)

Where Rriskless is the risk-free rate, an asset which
has zero risk and a low return rate (for example, gov-
ernment bonds). The relationship between these three
utility measures is illustrated in Figure 1.

2.2 Constraints

The Portfolio Optimization problem, as modelled by
Markowitz above, can be solved by deterministic nu-
merical methods with a small number of assets. How-
ever, in real life applications, there are a number of
constraints that must be applied to a feasible solu-
tion. When all the constraints are added to the Port-
folio Optimization problem, the search space becomes
concave and discontinuous, making the problem much
more difficult, and reinforcing the importance of heuris-
tic methods to solve it.

Among the constraints applicable to the portfolio
Optimization problem we find cardinality constraints,
lots, trading costs and trading volume.

Cardinality constraints are policy held by the in-
vestors which determine the maximum and minimum
number of assets that a portfolio must be composed
off. Portfolios with a number of assets above or below
these limits are not valid.

Lots is a more interesting constraint. While the
weights in the portfolio representation in Markowitz
model can be any real number, in practice stocks are
sold in bundles with a definite size, called ’lots’. When
assembling a portfolio, the indivisibility of lots means
that the exact value dictated by the optimized weight
cannot be reached, and some sort of compromise must
be found.

The trading costs constraint reflects the fees that
you have to pay when buying or selling a security.
They are more important in dynamic scenarios, where
the existance of trading costs means that when decid-
ing the optimal portfolio, the system must think not
only in the current situation of the market, but also
the position previously held. A new portfolio that dif-
fers too much from the previous one will incur great
trading costs.

A closely related concept to trading costs is the
limitations on trading volume. This constraints states
that only up to a certain volume of a security can be
bought or sold in a single trade. This adds a time
limit to the cost limit of the previous constraint.

3 Recent Approaches to Portfo-
lio Optimization

As described in the introduction, a superficial read of
Markowitz’s definition of the Portfolio Optimization
problem will suggest a simple implementation for the
model in Genetic Algorithm, where the genes corre-
spond to the real valued weights. In fact, the first ef-
forts to apply evolutionary computation to this prob-
lem followed this line.

However, recent advances have shown much more
sophisticated gene representations and dedicated operands.
The modern approaches come mainly in three cate-
gories.

The first are the “dual array” models, which solve
the problems with the naive implementation of a weight
array by adding an index array in the gene represen-
tation. The second category are the “Stock Selection”
works, which start from the premise that the weights
themselves are not as important as the choice of secu-
rities to compose the portfolio. Based on this premise,
their strategy focuses almost exclusively in ranking
the available stocks.

The last kind of approach are those who don’t fit
in the two main groups above. Usually they use some
sort of evolutive network implementation to achieve
fine control of the stocks that participate in the port-
folio.
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3.1 Genetic Programming Network

A Genetic Programming Network is an structure com-
posed by Judgement Nodes and Action Nodes, which
are linked in a neural network fashion. The GPN
works by starting at some pre-determined starting lo-
cation, and then running through the judgement and
action nodes.

Chen et al. [3] used the concept of a GPN to
generate an automated trader which used technical
data to take portfolio forming decisions. In this GPN,
when the operator passed by a judgement node, it
would acquire extra information about the market
state. When it passed by an action node, it would
perform a buy/sell action based on the information
acquired so far.

Chen also modified the original GPN with “control
nodes”, which guarantee that most GPN nodes are
visited by the operator.

Chen’s approach is quite unique among the other
works studied here, in that it does not rely in an static
“study, predict, result” cycle - instead, information
gathering and acting are done simultaneously.

3.2 Technical Index Evolution

Some recent works have tried an indirect approach to
the problem of rankign assets. Horta et al. [5] use
genetic algorithms to optimize parameters which are
utilized in the calculation of the technical indexes.

These parameter and indexes, then, are used for
assigning rank values to each security within the mar-
ket, and the best ranked securities are inserted into
the portfolio. The GA also contains the relative weights
of the different indexes when calculating the rank value.

In their current work, which of the technical in-
dexes will be used are defined from the beginning.
Future work from the current position would be to
use of Genetic Programming to assemble the combi-
nations with greater ease.

Another researcher who is using Technical Index
Evolutio is Lumanpauw [9]. Lumanpauw developed a
rather complex system divided into two stages. The
first stage utilizes fuzzy neural networks to calculate
the estimated returns of the assets, and this informa-
tion is used to rank the available assets. In association
to the fuzzy neural network, Lumanpauw uses a local
search to optimize the weights of the chosen assets.

3.3 Vector based MOGA

Instead of trying to develop a new and advanced al-
gorithm to approach the problem, Skolpadungket in-
stead concentrating in attending to the needs of the
real world [13]. In his paper, Skolpadunkget describes
in good detail how he adapted the array approach to
attent to all the above described constraints.

Basically, his method constitutes of two arrays,
the first one a binary array that indicates if a certain
security is part of the portfolio or not. And the second
array indicates the evolved weights for the security.

To conform with the problem constraints, Skol-
padungkat developed a series of “repair functions”,
which modifie the individuals in the population, so
that all of them obey the limits set up by the traders.

Chiam and Mamum also published a work in Vec-
tor Based MOGA for portfolio optimization [4]. In
their work, to avoid having to change the candidates
so much for the “fixing function”. The new genome
representation for them has an index array with a
fixed size, in which for each weight, a number repre-
senting the index of the security associated with the
signal. Their tested their algorithm with a large stock
simulation.

3.4 Factor Model

Factor Model is the name given by Clack and col-
leagues to their approach to Portfolio Optimization.
Basically, it consists of the evolution of a formula
to calculate the rank of an asset using Genetic Pro-
gramming. In this solution, the leaves of the GP are
structural information about the company behind the
stock, and many techncal indexes.

While they have achieved great results using the
above method, Petel and Clack [11] have tried to use
the ALPS framework to improve the diversity of the
individuals generated by their factor Model. ALPS
is a population policy where individuals in a popula-
tion may only crossover with other individuals with
a similar age. They managed to show that not only
diversity was preserved, but also the quality of the
result improved.

Hassan and Clack [6, 7], on the other hand, con-
centrated on keeping diversity on the clusters that
form when a population in a multi objective problem
spreads over the Pareto line.

Hassan was mainly concerned with the fact that,
while in the training dataset the individuals in the
population would crowd the Pareto set, during the
testing stage these individuals would migrate through
the pareto front, gathering in only a few locations. To
solve this, she instituted a new policy where individ-
uals in a Pareto cluster could only mate with other
individuals in the same cluster.

The results were that individuals that fell in a cer-
tain region during the training period, did not move
around so much with relation to the other individuals
when going to the test period.

3.5 Memetic Tree-based GA

The MTGA was proposed by Aranha and Iba in [2] in
response to shortcomings in the array based methods.
The basic idea of the MTGA is to establish a hier-
archical set of relationships between the assets that
belong to the portfolio, and use those relationships
to improve the exploitation abilities of the Genetic
Algorithm.

The tree structure leads to this exploitation by
dividing-and-conquering the portfolio in two different
ways: It allows the evaluation of the fitness of individ-
ual trees, which leads to the crossover based on these
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Figure 2: A tree genome and its corresponding port-
folio. The values in the intermediate nodes indicate
the weight of the left sub tree. The complement of
that value is the weight of the right sub tree. The
final weight of each asset (ax) is given by the sum of
the weights of all occurrences of that asset in the tree.

fitness values. It also allow the local search step to
optimize many 2-variable nodes, instead of one giant
portfolio with hundreds of variables at once.

3.5.1 Tree Representation

Each solution in the Genetic Algorithm is represented
as a binary tree. Each non-terminal node holds the
weight between its two sub trees. This weight is a
real value, w, between 0 and 1, which indicate the
weight of its left sub tree (the choice of left over right
is arbitrary). The right sub tree of has weight 1 − w.
Each terminal node holds the index of an asset in the
market. It is possible to have more than one terminal
pointing to the same asset in the same tree. Figure 2
shows this representation.

To extract the portfolio from this representation,
we calculate the weight of each terminal node by mul-
tiplying the weights of all nodes that need to be visited
to reach that terminal, starting from the root of the
tree. After all terminal nodes are visited, the weights
of those terminals that point to the same asset are
added together. The assets which are not mentioned
in the tree are assigned a weight of 0.

3.5.2 Evolutionary Operators

The tree representation for an individual’s genetic ma-
terial in the MTGA requires the redesign of the basic
evolutionary operators (crossover and mutation), but
it also allow the development of new operators that
use the unique characteristics of the tree representa-
tion.
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Figure 3: Crossover (BWS) and Mutation operators
for the tree representation.

The mutation operator works by cutting off the
tree at a point, and replacing the cut-off sub tree
with a randomly generated sub tree. In this work,
the cut-off point is selected by first randomly choos-
ing the target depth (with a linear probability), then
following a random path from the root node until the
desired depth is achieved. This selection method fa-
vors cut-off points near the leaves, which results in
less aggressive mutations (see Figure 3).

The crossover operator works by exchanging sub
trees between two individuals. One crossover point is
chosen for each tree, and the sub trees that start from
that point on are swapped between the two trees.

If the crossover point is chosen at random, the op-
erator is called Simple Crossover. Like in the muta-
tion operator, in the simple crossover a depth is cho-
sen with linear probability, and a path is randomly
followed from the tree until the target depth.

3.5.3 Local Search

The local search operator executes a simple hill climb-
ing optimization on each node of an individual. It
starts on the deepest non-terminal nodes, and then
works its way back towards the root.

For each visited node, the return and risk value for
the left and right children are obtained, and used to
calculate the utility function as if the node was a two-
asset portfolio. The pseudo-code for the hill climbing
function can be seen in Figure 3.5.3.

Where the parameter meme speed is the value by
which the weight changes every iteration, meme accel
must be < 1.0, and is the value by which meme speed
changes every time the weight cross the optima point.
And meme tresh is the minimum value of meme speed
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while (meme_speed > meme_tresh AND 0 < weight < 1)
do

old_fitness = fitness;
weight = weight + meme_speed;

if (weight > 1)
weight = 1;

if (weight < 0)
weight = 0;

calculate_fitness(weight);

if (fitness < old_fitness)
meme_speed = meme_speed * meme_accel * -1;

done

Figure 4: Algorithm for local search

which signalizes the end of the search. The search also
ends if the weight reaches 1.0 or 0.0 (when the optima
is not in the weight range 1..0).

The main use of this operator is to improve the
weights of the individuals during the evolutionary run.
A second utility of this operator, though, is to re-
balance the portfolio between scenarios. When we use
a portfolio through a long period of time (multiple
scenarios), it is necessary to adjust the portfolio to
changes in the market [1].

By repeating the use of local-search operator after
a change of market scenario, we can adapt the weights
between the assets to the new conditions of the mar-
ket. Because the the assets in the portfolio does not
change, we achieve lower costs than if we started the
evolutionary system anew for each scenario.

4 The Rebalancing Problem

An active field of study among researchers in the Fi-
nancial Engineering field is the problem of Portfolio
Rebalancing.

Most of the works cited and described here only
actuate on static portfolios. The static portfolio prob-
lem is only concerned with the optimal portfolio at
the moment. However, when making investments in
the real market, we are more worried with dynamic
portfolios.

In Dynamic Portfolios, the trader already has a
position in his hand, and he wants to change to a
more advantageous position. However, if he changes
his position too much, the trading costs will be too
high. So the movements from the first portfolio to
the next must either be small, or be spread over time.

Also, after the investor has his new optimal portfo-
lio, the system must be able to detect that the market
has changed beyond the predicted amount, and thus
the portfolio needs to be re-balanced again.

4.1 Pareto Front Management

Hassan and Clack’s management of the Pareto Front
and the cluster of solutions in certain regions of the
pareto front is an example of one of the current re-
searches that are being developed on this matter.

By stabilizing the movement of a individual during
the training and test data, so that the individual does
not change clusters between the two occasions, the
system increases the ability of the solutions to degrade
gracefully, which increases the reliability of the system
in situations of market stress.

4.2 Dynamic Memetic Optimization

The MTGA previously discussed includes a local search
operator that can be used to change the internal weights
on the structure based in small changes in the market.
While the MTGA does not possess the same “grace-
ful degradation” propeties as the previous system, ex-
perimental results show that by using the local search
operator to update the weights monthly results in a
very stable return of investment.

5 Conclusion

Research on the Portfolio Optimization problem, as
modelled by Markowitz and even with a number of
real life constraints, has been developed a lot in recent
years, and some amount of cross-polination between
the research efforts can already be observed.

While the methods to determine which are the
best securities inside a market, and given those secu-
rities, what are the optimal weights to secure a high
return and low risk, are well known and developed,
there are new questions and research directions that
can be found when you step back and look at all the
research effort that has been done as a group.

The first such direction has already been identified
before. It is the research of good methods for the
solution of the rebalancing problem. The rebalancing
problem requires a higher level of intelligence from
the systems, where the past and future positions are
taken into consideration, and a feeling for when it is
the right time to update your portfolio is needed. This
is an area that is receiving some early attention from
the community.

The second research direction that can be seen
when observing all the work that has been done so far,
is the integration between the weight optimizers and
the factor model systems. It is quite obvious that the
biggest divide in the works in this field is in whether
one should concentrate on choosing the best stocks, or
finely tuning the weight between those stocks. How-
ever, this is a false dicothomy - both problems can be
tackled at the same time, by mixing the specific parts
from algorithms from both sides of the divide.
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