
メメティックアルゴリズムを用いた金融ポートフォリオの再構築
Use of Memetic Algorithms for Portfolio Rebalancing

アランニャ　クラウス 1 ∗ 　 伊庭　斉志 1

Claus Aranha1 Hitoshi Iba1

1 東京大学電気系工学学科
1 University of Tokyo, Department of Electrical Engineering

Abstract: We present a system that uses Memetic Algorithms to perform long-term rebalancing
of financial portfolios. This allows for a greater resilience to changes in the market. In our
experiments, we achieved a number of portfolios which show stable return values even during
market crash environments.

1 Introduction

Investment Portfolios are used by financial institu-
tions in the management of long term investments,
like savings accounts, retirement funds, etc. The idea
of an investment portfolio is that if it is unwise to keep
money still, for it loses value over time, it is also too
risky to put everything into a few investment, for it
exposes the capital to sudden changes in the market.

The Markowitz Portfolio Model describes how to
minimize the risk of an investiment, by distributing
the capital into multiple, counter correlated assets.
This model can be used to calculate the optimal dis-
tribution of capital in order to minimize the risk of an
investiment, for a given target return.

This optimization problem is called the Portfolio
Optimization Problem, and has been heavily studied
in the fields of Operational Research and Financial
Engineering. In its original form, it is possible to solve
the Portfolio Optimization problem using techniques
such as Linear or Quadratic Programming. However,
as the number of asset grows, and constants such as
lots and limits are added, the problem require more
elaborate techniques to be solved, like Genetic Algo-
rithms.

While the Markowitz Model for portfolio optimiza-
tion concerns itself with the optimal portfolio struc-
ture for a given market state, in real life we are also
concerned with fluctuations in the market and how to
adjust the Portfolio in response to those fluctuations.

However, because of trading costs, this response
must be limited so that gains due to it are not negated
by the cost of changing the portfolio’s position. This
problem, known as Portfolio Management or Rebal-
ancing, is very appropriate to Evolutionary Algoriths,
whose main characteristic is their robustness to changes
in their environment.

In this work, we extend the MTGA (Memetic Tree
Based Genetic Algorithm) to deal with the Dynamic
Portfolio Optimization problem. The MTGA was pre-
viously described in [2]. It is a Genetic Algorithm

∗連絡先：東京大学電気系工学学科
E-mail: caranha@iba.t.u-tokyo.ac.jp

0.3

a1

0.2

a2

0.5

0.7

a2a4
a5

a1 a2 a3 a4 a5

Weight

Name AMZN GOOG INTL MSFT YHOO

0.22 0.3500.03 0.4

Figure 1: A tree genome and its corresponding port-
folio. The values in the intermediate nodes indicate
the weight of the left sub tree. The complement of
that value is the weight of the right sub tree. The
final weight of each asset (ax) is given by the sum of
the weights of all occurrences of that asset in the tree.

enhanced by a tree structure, which produced good
results for optimizing static portfolios (See figure 1).

The tree structure for the genome allows the use
of local optimization in the evolutionary process. In
our previous work, this local optimization was used
to find the optimal values for the weights. At that
time, we suggested that the local optimization could
also be used to rebalance the portfolio according to
the changes in the market conditions. In this work
we continue that suggestion by developing a portfolio
strategy based on the use of the local optimization on
a dynamic market scenario.

We validate our proposal by means of simulated

人工知能学会研究会資料 
SIG-FIN-002-01

1



experiments. We use the MTGA with local optimiza-
tion to generate a portfolio strategy for a period of
one year, based on an optimal portfolio generated at
the start of the period. We compare this strategy with
others, one where the optimal portfolio is re-generated
monthly, and the benchmark performance monthly.

The results shows us how using the local optimiza-
tion to rebalance the portfolio to adapt to new market
conditions generate a stable level of return, even dur-
ing the depression scenario experienced last year.

2 The Portfolio Problem

The resource allocation problem is a traditional op-
timization problem, which consists of distributing a
limited “resource” to a number of “jobs”, in order to
satisfy one or more utility functions [4].

The Portfolio Optimization problem falls in this
category. The limited resource is the capital available
for investment, and the jobs are the varied assets in
which this capital can be invested (for example, com-
pany stock or foreign currency. The utility functions
in this problem are the Portfolio Estimated Return,
to be maximized, and the Portfolio Risk, to be mini-
mized.

The model for the Portfolio Optimization problem
was formally proposed by Markowitz [6]. Markowitz’s
Portfolio Model could be solved by numerical meth-
ods, like Quadratic Programming [12]. However, when
adding real world constraints to the problem (for ex-
ample, large number of assets, restrictions to the val-
ues of weights, trading costs, etc), the search space be-
comes large and non-continuous, and heuristics, such
as evolutionary computation, must me used to solve
the problem.

An extra layer of complexity is added to this prob-
lem when dynamic market behavior is considered.

2.1 The Markowitz Model

A portfolio P as a set of N real valued weights (w0, w1, ...wN )
which correspond to the N available assets in the
market. These weights must obey two basic restric-
tions [12]: The total sum of the weights must be equal
to one; and all weights must be positive.

The utility of a portfolio is measured by its Esti-
mated Return and its Risk. It is calculated as:

RP =
N∑

i=0

Riwi (1)

Where N is the total number of assets, Ri is the given
estimated return of each asset, and wi is the weight
of each asset in the portfolio.

The risk of an asset is given as the variance of its
return over time (variability). The risk of the portfolio
is defined as:

σp =
N∑

i=0

N∑
j=0

σijwiwj (2)

Riskless
Rate

Possible
Portfolios

Return

Risk

Efficient Frontier

Sharpe Ratio

Figure 2: Risk-return projection of candidate port-
folios. The search space is bounded by the Efficient
Frontier. Sharpe ratio is the angle of the line between
a portfolio and the risk-free rate.

Where σij , i 6= j is the covariance between i and j.
While the risk is usually stated as the variance of the
return of a given asset, there are other definitions of
risk that have been used to bias the resulting port-
folios towards certain kinds of investment strategies.
For other risk metrics, see the works of Harish[9] and
Shu[7].

These two utility measures can be used separately
to determine the optimal portfolio, or they can be
combined. The Sharpe Ratio measures the trade off
ratio between risk and return for a portfolio, and is
defined as follows:

Sr =
RP − Rriskless

σp
(3)

Where Rriskless is the risk-free rate, an asset which
has zero risk and a low return rate (for example, gov-
ernment bonds). The relationship between these three
utility measures is illustrated in Figure 2.

2.2 Real World Constraints

The Markowitz Model, as described above, can be
solved by optimization techniques such as Quadratic
Programming [12]. However, when real world con-
straints are added, the problem becomes too complex
for simple optimization techniques. Practical port-
folios are composed from markets with hundreds to
thousands of available assets, and the calculation of
risk measures grows quickly in relation to the number
of assets.

Also, real world applications have constraints re-
lated to the values of weights, and to trading. Weight
constraints include maximum and minimum weights
and lots (indivisible unit of a held asset). These con-
straints turn the search space non-convex, making the
problem harder.

Trading constraints include minimum and maxi-
mum trading volume (how much of an asset you can
buy at once) and trading cost (proportional to the
amount of asset traded). These constraints take ef-
fect when multiple scenarios (time periods) are con-

2



sidered, and affect greatly the outcome of the opti-
mization process.

2.3 Dynamic Market Behavior

We call Dynamic Portfolio Optimization, or Rebal-
ancing, the problem of generating a trading strategy
that keeps the optimized portfolio with a high level of
return and risk, according to the policies of the port-
folio operator. This policy must modify the optimized
portfolio according to changes in the return values of
the assets in the market, so that the target return is
achieved in spite of those changes.

The main question when rebalancing a portfolio
is how to reduce the trading cost. To change from
portfolio P to portfolio P ′, there is an operational
cost proportional to the difference between P and P ′.
Usually, the trading cost C takes a form similar to:

Ca =
{

kc if 0 ¡ Ta < Tmin

Ta ∗ δc if Ta > Tmin
(4)

C =
∑

Ca (5)

Where Ca is the cost associated with the trading
of one asset. This cost is either a fixed minimum value
(kc), for transactions below a certain amount (Tmin),
or a percentage of the total transaction value (δc), if
the transaction is above Tmin.

In some situations, the cost to rebalance the port-
folio to the new global optimum in a dynamic market
environment may be higher than the improvement in
the utility function. To avoid problems like this, it
is essencial to add a new objective function to the
Dynamic Portfolio Optimization problem: the trans-
action cost, also represented as the distance between
two portfolios.

3 Related Research

Two important questions in the Portfolio Optimiza-
tion problem are how to select the assets and the
weights. The simplest answer is to use a single array
with one real value for the weight of each asset [3, 5].

A more elaborated strategy to select the assets
which will participate of the portfolio is to use two
arrays: a binary array, which indicates whether an
asset is part of the portfolio or not, and the real valued
array to calculate the weights of the assets [1, 8].

A somewhat different way to assemble the portfo-
lio is to use GP to evaluate each asset. The GP can be
used to calculate the suggested weight of each asset
from technical indicators [10], or to generate a rank-
ing of assets, which will be used to select the assets
to add to the portfolio [11].

4 Memetic Tree-based Genetic
Algorithm

The basic idea of the MTGA is to establish a hier-
archical set of relationships between the assets that
belong to the portfolio, and use those relationships
to improve the exploitation abilities of the Genetic
Algorithm.

The tree structure leads to this exploitation by
dividing-and-conquering the portfolio in two different
ways: It allows the evaluation of the fitness of individ-
ual trees, which leads to the crossover based on these
fitness values. It also allow the local search step to
optimize many 2-variable nodes, instead of one giant
portfolio with hundreds of variables at once.

4.1 Tree Representation

Each solution in the Genetic Algorithm is represented
as a binary tree. Each non-terminal node holds the
weight between its two sub trees. This weight is a
real value, w, between 0 and 1, which indicate the
weight of its left sub tree (the choice of left over right
is arbitrary). The right sub tree of has weight 1 − w.
Each terminal node holds the index of an asset in the
market. It is possible to have more than one terminal
pointing to the same asset in the same tree. Figure 1
shows this representation.

To extract the portfolio from this representation,
we calculate the weight of each terminal node by mul-
tiplying the weights of all nodes that need to be visited
to reach that terminal, starting from the root of the
tree. After all terminal nodes are visited, the weights
of those terminals that point to the same asset are
added together. The assets which are not mentioned
in the tree are assigned a weight of 0.

There are some characteristics of this structure
which are important to consider when implementing
an Evolutionary Algorithm based on it:

First Every sub tree in an individual can be treated
as if it were a normal tree. This is because the
root node’s structure is identical to that of any
intermediate node. This allows each sub tree to
have its own individual fitness, calculated in the
same way as the fitness of the main tree. This
is used in the specialized genetic operators.

Second A portfolio extracted from this representa-
tion is always normalized. This is because the
weight on each node is limited to the 0..1 in-
terval, and the weight of each terminal is the
multiplication of the node weights. Because of
the first characteristic, this also applies to sub
trees.

Third The maximum number of assets in a portfolio
represented by a tree is limited by the depth of
the tree. As each terminal corresponds to one
asset, a tree with depth d may hold at most
2d−1 assets. Because of incomplete trees and

3



0.2

0.50.4

0.6 0.60.30.1

a1a3 a3 a2 a1 a2 a4 a5

0.2

0.4

0.30.1

a1a3 a3 a2

0.8

a4 a5

0.9

a5

0.1

a3

Mutation

Crossover

BadGood GoodBad

ChildParent 2Parent 1

Figure 3: Crossover (BWS) and Mutation operators
for the tree representation.

terminals with repeated assets, usually the ac-
tual number of assets in a tree is much smaller
than this.

4.2 Evolutionary Operators

The mutation operator works by cutting off the tree
at a point, and replacing the cut-off sub tree with a
randomly generated sub tree. In this work, the cut-off
point is selected by first randomly choosing the tar-
get depth (with a linear probability), then following
a random path from the root node until the desired
depth is achieved. This selection method favors cut-
off points near the leaves, which results in less aggres-
sive mutations (see Figure 3).

The crossover operator works by exchanging sub
trees between two individuals. One crossover point is
chosen for each tree, and the sub trees that start from
that point on are swapped between the two trees. In
this operator, the sub tree with the highest fitness
from the first parent is exchanged with the sub tree
with worst fitness in the second parent. This operator
usually improves the fitness of the individual receiving
the better sub tree [2]. This means that the BWS can
be used to emphasize a policy of exploitation in the
search (See Figure 3).

4.3 Local Search

The local search operator executes a simple hill climb-
ing optimization on each node of an individual. It
starts on the deepest non-terminal nodes, and then
works its way back towards the root.

For each visited node, the return and risk value for
the left and right children are obtained, and used to

while (meme_speed > meme_tresh AND 0 < weight < 1)
do

old_fitness = fitness;
weight = weight + meme_speed;

if (weight > 1)
weight = 1;

if (weight < 0)
weight = 0;

calculate_fitness(weight);

if (fitness < old_fitness)
meme_speed = meme_speed * meme_accel * -1;

done

Figure 4: Algorithm for local search

calculate the utility function as if the node was a two-
asset portfolio. The pseudo-code for the hill climbing
function can be seen in Figure 4.3.

Where the parameter meme speed is the value by
which the weight changes every iteration, meme accel
must be < 1.0, and is the value by which meme speed
changes every time the weight cross the optima point.
And meme tresh is the minimum value of meme speed
which signalizes the end of the search. The search also
ends if the weight reaches 1.0 or 0.0 (when the optima
is not in the weight range 1..0).

4.4 Rebalancing

In this work we introduce the use of the local search
step with the tree structure to rebalance the portfolio
according to changes in the Market environment.

First the optimal portfolio is evolved for the initial
time period, following the steps described above. Af-
ter that, for each subsequent time period new values
for the estimated return and correlation between the
assets is calculated. Based on these values, the sys-
tem executes the local optimization step on the op-
timal portfolio’s trees, in order to calculate new best
weights based for the previous assets.

By realizing the Rebalancing strategy in this man-
ner, the portfolio realizes the asset selection in the first
time period, and then uses only the assets that were
selected in the subsequent time periods. If we can
guarantee a good initial asset selection, the rebalanc-
ing policy will be able to react to market changes to
keep the return levels.

5 Experiments

We use a simulation of the market behavior to anal-
yse the results of the portfolio strategy generated by
MTGA on a dynamic market. Our goal is to deter-
mine if the Memetic Strategy is able to generate a sta-
ble, low risk return during the whole period. In this
section we describe the experiment and its results.

4



(a) Nasdaq 07 (b) S&P 07

(c) Nasdaq 08 (d) S&P 08

Figure 5: Experiment result for the Rebalancing strategy in the four datasets, compared to the benchmark
portfolio

5.1 Datasets

We use two datasets in our simulations. The NAS-
DAQ dataset contains assets from the NASDAQ100
index, which is composed mainly of technology related
industry. The SP500 dataset contains assets from the
S&P 500 index, which has a more varied composition,
with assets from industry of many different fields.

For each dataset, we have two 12-month data pe-
riods, one for the year of 2007 and one for 2008. The
year 2007 data represents a more stable period of mar-
ket movements, and serves as a benchmark for normal
behavior.

In the late part of the year 2008 there was the big
crash, which is reflected in the 2008 dataset. The goal
of this dataset is to verify if the policy generated by
MTGA and its rebalancing is able to weather a period
of economic downturn.

5.2 Parameters

We used 500 generations and 200 individuals per gen-
eration. The crossover rate was 0.8, and the mutation
rate 0.03. The tree depth was 8 (128 terminals in a
full tree). The riskless asset’s return was set as 0.03.

For the MTGA system, we used a 0.6 chance of
executing the local search step for each individual.
The chance of executing the guided crossover was 0.6
per crossover. The sensitivity of the system for these
parameters is not explored in this work.

The parameter for the local optimization step are:
0.1 for meme speed, 0.333 for meme delta, and 0.003
for meme tresh. Other than meme tresh, which changes
the precision of the search, changing these values does
not seem to affect the quality of the local search.

5.3 Results

In figure 4.4 below we list the results of our experi-
ments with the four datasets. The results shown are
the return values of both policies for each month in

5



the one year time period.
As we can see in the figure, the portfolio rebal-

anced by the local optimization shows a very stead
return value, while the benchmark portfolio for the
same period displays very strong raises and drops.
This show that the evolutionary algorithm was able
to find a low risk group of assets even when using only
data for the first month.

In the two datasets for 2007, the portfolio returns
are more stable, slowly rising. For the 2008 datasets,
we see that the portfolio return shows a drop in the
last the months of the year - this is because crash in
the stock market has changed the market condition
to a very different one when compared with the start
of the period. Still, the fall is a gradual one, and it
is possible to see when a complete re-optimization of
the portfolio becomes necessary.

6 Conclusion

We have tested the use of Memetic Algorithms and
Local optimization for the Rebalancing of portfolios
in a Dynamic Market context. Rebalancing is an im-
portant step in real life application of Portfolio op-
timization, because it allows the portfolio to adapt
to changes in the market, like bull periods or sudden
crashes.

The genetic algorithm is specially well equipped to
deal with rebalancing of portfolios. This is because of
its evolutive characteristics. In our experiments, we
have observed that using genetic algorithms to rebal-
ance the portfolio generated in the start of a 12-month
period results in a very stable investment strategy,
even during crash periods.

References

[1] Claus Aranha and Hitoshi Iba. Modelling cost
into a genetic algorithm-based portfolio opti-
mization system by seeding and objective shar-
ing. In Proc. of the Conference on Evolutionary
Computation, pp. 196–203, 2007.

[2] Claus Aranha and Hitoshi Iba. A tree-based
ga representation for the portfolio optimization
problem. In GECCO - Genetic and Evolutionary
Computation Conference. ACM Press, July 2008.
accepted.

[3] Ronald Hochreiter. An evolutionary computa-
tion approach to scenario-based risk-return port-
folio optimization for general risk measures. In
M. Giacobini et al., editor, EvoWorkshops 2007,
No. 4448 in LNCS, pp. 199–207. Springer-Verlag,
2007.

[4] Toshihide Ibaraki and Naoki Katoh. Resource Al-
location Problems - Algorithmic Approaches. The
MIT Press, 1988.

[5] Piotr Lipinski, Katarzyna Winczura, and Joanna
Wojcik. Building risk-optimal portfolio using

evolutionary strategies. In M. Giacobini et al.,
editor, EvoWorkshops 2007, No. 4448 in LNCS,
pp. 208–217. Springer-Verlag, 2007.

[6] H. Markowitz. Mean-Variance analysis in Port-
folio Choice and Capital Market. Basil Blackwell,
New York, 1987.

[7] Shu ping Chen, Chong Li, Sheng-Hong Li, and
Xiong wei Wu. Portfolio optimization with
transaction costs. Acta Mathematicae Applicatae
Sinica, Vol. 18, No. 2, pp. 231–248, 2002.

[8] Felix Streichert, Holger Ulmer, and Andreas
Zell. Evolutionary algorithms and the cardi-
nality constrained portfolio optimization prob-
lem. In D. Ahr, R. Fahrion, M. Oswald, and
G. Reinelt, editors, Operations Research Proceed-
ings. Springer, September 2003.

[9] Harish Subramanian, Subramanian Ramamoor-
thy, Peter Stone, and Benjamin J. Kuipers. De-
signing safe, profitable automated stock trading
agents using evolutionary algorithms. In GECCO
2006 - Genetic and Evolutionary Computation
Conference, pp. 1777–1784, Seattle, Washington,
July 2006. ACM Press.

[10] James Cunha Werner and Terence C. Fogarti.
Genetic control applied to asset managements.
In J.A. Foster et Al., editor, EuroGP, LNCS, pp.
192–201, 2002.

[11] Wei Yan and Christopher D. Clack. Evolving ro-
bust gp solutions for hedge fund stock selection
in emerging markets. In GECCO 2007 - Genetic
and Evolutionary Computation Conference, Lon-
don, England, July 2007. ACM Press.

[12] Yuh-Dauh-Lyu. Financial Engineering and
Computation. Cambridge Press, 2002.

6




