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Abstract: This paper examines the possibility of combining a DSGE model and neural networks to 

supplement each other, with regard to out-of-sample forecasts for economic variables. The aim is to build 

a model with theoretical interpretability and state-of-the-art performance. The novel neural-net structure 

of TDVAE (Temporal Difference Variational Auto-Encoder) proposed by Gregor et.al [2019] enables to 

realize this idea. TDVAE virtually replicates a Gaussian stochastic state-space model through 

combination of neural networks. Because a DSGE model provides theoretical restrictions on the state 

transition and observation matrices of a linear state-space model, I choose to transplant those 

DSGE-oriented matrices into the formulations of state transition and observation probabilities in TDVAE. 

This TDVAE-DSGE approach certainly achieved the superior performance in the task of out-of-sample 

forecasts on Japan's real GDP during 1Q/2011 and 4Q/2018. 

 

1. Introduction 

This paper examines the possibility of combining a 

DSGE model and neural networks to supplement each 

other, with regard to out-of-sample forecasts for 

economic variables. The aim is to build a model with 

theoretical interpretability and state-of-the-art 

performance. 

1.1. Forecasts by DSGE models 

The dynamic stochastic general equilibrium (DSGE) 

model is a central tool to analyze fluctuation of 

macroeconomic variables in the mainstream 

macroeconomics, and has increasingly been used for 

forecasting purpose. There is a plentiful amount of 

literature examining the forecast performances of DSGE 

models. Following the seminal work by Smets and 

Wouters [2007], Edge and Gurkaynak [2010] reported 

that the forecast accuracy of medium-scale DSGE model 

was not satisfactory but so are the other statistical model 

(Bayesian VAR) and professional forecasts.  

The linearized DSGE model can virtually be regarded 

as a linear state-space model, with the theoretical 

specification of transition and observation matrixes. 

Indeed, Herbst and Schorfheide [2012] indicated that 

forecasts from a DSGE model could outperform those 

from an unrestricted VAR if the theoretical restriction on 

comovements among economic variables is well 

consistent with the actual data generation processes. 

Recently, Del Negro et.al [2013] showed that considering 

financial friction into a DSGE could contribute to the 

better forecast performance during the periods just after 

the financial crisis in 2008-09 in the US. The latest study 

of Hasumi et.al [2018] also found that an appropriate 

model could vary with underlying economic situations, 

through the introduction of time-varying pooling method 

of multiple models. They reported that the DSGE model 

with the financial friction outperformed the frictionless 

benchmark in terms of forecast performance during the 

1980s financial bubble and following burst in Japan, 

while the frictionless model marked better scores for 

more recent periods. This may suggest that any single 

type of DSGE seems difficult to persistently outperform 

more flexible type of statistical models. Having said that, 

a DSGE model has own advantage as a descriptive tool, 

with the theoretical correspondence and high 

interpretability. 

1.2. Forecasts by neural networks 

One of the prominent progress in statistical modeling 
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in these days is so-called artificial intelligence, more 

precisely, deep-neural-network type of models. Their 

superior performances to other competing statistical 

models were reported in many fields. Research applying 

neural networks to economic time-series are quite recent, 

and most of them deal with the forecasts of asset prices. 

The early research by Chen et al. [2003] applied a neural 

network to predict return of Taiwanese equity index, 

reporting the improved accuracy compared to a GMM 

approach and random walk. More recently, Fischer and 

Krauss [2017] compared the prediction performances of 

LSTM (Long Short Term Memory), Random Forests, 

and logistic regression, and reported the superiority of 

LSTM in respect of the daily S&P500 data from 1992 to 

2015. Borovkova and Tsiamas [2018] employed an 

ensemble (dynamic pooling) method of multiple LSTM 

networks for the intraday stock price prediction, and 

reported the better performance against the logistic 

regression benchmarks. Those pieces of research show 

that neural-net type of models certainly tend to beat 

traditional statistical models in the context of forecasting 

financial data, and LSTM network particularly exhibits 

the superior performance. LSTM network can treat 

non-linear dynamics and long-memory feature of time 

series flexibly, which differentiate from traditional 

statistical models like simple Vector Auto-Regression 

(VAR). 

Although neural network type of models tend to show 

state-of-the-art forecast performance, it has an 

disadvantage of so-called "black box" feature. For most 

neural networks, it is generally difficult to trace the 

transmission process of input information to outlay with 

their repeated non-linear transformations, which also 

hampers the models to hold theoretical correspondence.  

Summing up the above literatures, the theoretical 

restriction by DSGE could make the linear state-space 

model interpretable, and contribute to the forecast 

accuracy as long as the restriction is consistent with the 

actual data generation process. Nonetheless, its absolute 

performance is said to not satisfactory. On the other hand, 

neural network models tend to outperform traditional 

statistical models in forecasts of financial time series, but 

its opacity or "black box" nature of information 

processing hinders the application to macroeconomic 

study. 

1.3. State-space model constructed by neural 

networks 

The novel structure of TDVAE (Temporal Difference 

Variational Auto-Encoder) proposed by Gregor et.al 

[2019] could help to address both issues of the opacity 

for neural networks and the poor accuracy for DSGE 

models, through combining the two approaches. The 

purpose of this paper involves this idea, namely, 

constructing theoretically interpretable and 

state-of-the-art performance model.  

As mentioned more precisely later, TDVAE enables to 

replicate a Gaussian stochastic state-space model in a 

framework of end-to-end neural networks. Generally 

speaking, Variational Auto-Encoder (VAE) consists of 

encoder and decoder, where the former transforms data 

to lower-dimensional state variables (so-called 

representation) while the latter tries to reconstruct the 

data from representation, with assumption for the state 

variables to follow a normal distribution. TDVAE 

extends this concept to treat dynamic state variables by 

analogy with state space modeling. In this TDVAE 

model, a filtering probability constitutes the encoder 

which transforms observed data to contemporaneous 

states variables, while a transition probability describes 

dynamics of states variables. Then, a smoother 

probability validates the transition of state variables 

backward. These probabilities are parameterized by 

means and variances of Gaussian distribution, which are 

expressed as the outputs of deep neural networks trained 

by the data, inheriting the concept of Variational 

Auto-Encoder.  

As seen above, TDVAE is virtually a semi-parametric 

non-linear state-space model, in which latent states, a 

low of motion, and an observation function can be 

specified in consistent with the theoretical restrictions 

derived from a DSGE model.  

In the next section, I explain a basic structure of the 

proposed TDVAE-DSGE method. Then, results from 

forecasting back-tests are presented in Section 3, and the 

backgrounds of accuracy gains are discussed in Section4. 

 

2. Proposed Methods 

This section explains a basic structure of TDVAE, and 

the way to specify its components to be consistent with 

an orthodox DSGE model.  
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2.1. TDVAE structure 

TDVAE assumes a general form of stochastic state-space 

model, where the joint likelihood of a state sequence 

𝐳 = (𝑧1, … , 𝑧𝑇)  and an observation sequence 𝐱 =

(𝑥1, … , 𝑥𝑇)  can be written as 

𝑝(𝐱, 𝐳) = ∏ 𝑝(𝑧𝑡|𝑧𝑡−1)𝑝(𝑥𝑡|𝑧𝑡)𝑡 . Here, 𝑝(𝑧𝑡|𝑧𝑡−1) 

represents a transition model and 𝑝(𝑥𝑡|𝑧𝑡)  does a 

decoder or an observation function.   

In order to optimize the data likelihood 𝑝(𝐱) , a 

state-space model is commonly trained by computing a 

posterior 𝑞(𝐳|𝐱) over the states given the observations, 

which can be autoregressively decomposed as 

𝑞(𝐳|𝐱) = ∏ 𝑝(𝑧𝑡|𝑧𝑡−1, 𝜙𝑡(𝐱))𝑡 , where 𝜙𝑡 is a function 

augmenting the observed data up to 𝑡 (𝑥1, … , 𝑥𝑡) for 

filtering posteriors, or the entire sequence 𝐱  for 

smoothing posteriors. 

For a given 𝑡 , TDVAE evaluates the conditional 

likelihood 𝑝(𝑥𝑡|𝑥<𝑡) by inferring over only two latent 

states: 𝑧𝑡−1 and 𝑧𝑡 , and obtains the ELBO (Evidence 

Lower BOund) for a state-space model as follows:  

log 𝑝(𝑥𝑡|𝑥<𝑡) ≥ 𝔼(𝑧𝑡−1,𝑧𝑡)~𝑞(𝑧𝑡−1,𝑧𝑡|𝑥≤𝑡)[log 𝑝(𝑥𝑡|𝑧𝑡)

+ log 𝑝(𝑧𝑡−1|𝑥<𝑡) + log 𝑝(𝑧𝑡|𝑧𝑡−1)

− log 𝑞(𝑧𝑡|𝑧≤𝑡) − log 𝑞(𝑧𝑡−1|𝑥≤𝑡)]. 

(1) 

Maximizing ELBO (the right-hand side) instead of the 

likelihood itself (the left hand side) is common approach 

to train encoder-decoder type of neural networks such as 

VAE (Variational Auto-Encoder). More formal 

derivation of ELBO for stochastic state-space model is 

explained in Buesing et al. [2018].  

Here, TDVAE introduces an online belief state 𝑏𝑡 as a 

summary statistics of the observed (past) data at any 

given 𝑡. This enables to rewrite the conditional data 

distribution at 𝑡  as 𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑥1, … , 𝑥𝑡) ≈

𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑏𝑡), and the filtering posteriors at 𝑡  as 

𝑞(𝑧𝑡|𝑥1, … , 𝑥𝑡) ≈ 𝑝𝐵(𝑧𝑡|𝑏𝑡) , with 𝑏𝑡 = 𝑓(𝑏𝑡−1, 𝑥𝑡  ) . 

Now, the loss function of TDVAE derived from belief 

based ELBO is obtained as follows: 

−ℒ = 𝔼 𝑧𝑡~𝑝𝐵(𝑧𝑡|𝑏𝑡 )

𝑧𝑡−1~𝑞(𝑧𝑡−1|𝑏𝑡,𝑏𝑡−1 )

[log 𝑝(𝑥𝑡|𝑧𝑡)

+ log 𝑝𝐵(𝑧𝑡−1|𝑏𝑡−1) + log 𝑝(𝑧𝑡|𝑧𝑡−1)

− log 𝑝𝐵(𝑧𝑡|𝑏𝑡)

− log 𝑞(𝑧𝑡−1|𝑧𝑡 , 𝑏𝑡 , 𝑏𝑡−1)]. 

(2) 

For actual training of TDVAE, functional forms need to 

be specified. The online belief state is expressed by a 

standard LSTM network: 𝑏𝑡 = 𝐿𝑆𝑇𝑀(𝑏𝑡−1, 𝑥𝑡  ) . The 

mapping operator from 𝑥 to a normal distribution with 

mean 𝜇(𝑥)  and log-standard deviation log 𝜎(𝑥)  is 

denoted as 𝐷 , where  [𝜇, log 𝜎] = W3 tanh(𝑊1𝑥 +

𝐵1) sigmoid(𝑊2𝑥 + 𝐵2) + 𝐵3 , with 𝑊1, 𝑊2, 𝑊3  as 

weight matrices and 𝐵1, 𝐵2, 𝐵3  as biases. The size of 

hidden layer of the 𝐷 maps is set to 100, and belief 

states have size 100. Then, I choose to use the Adam 

optimizer. 

The set of equations describing the system and its loss 

function over the pair of two time periods 𝑡 and 𝑡 − 1 

are as follows: 

𝑏𝑡 = 𝐿𝑆𝑇𝑀(𝑏𝑡−1, 𝑥𝑡  ) 

𝑧𝑡
𝐵~𝑝𝐵

𝑡 = 𝐷(𝑏𝑡) 

𝑝𝐵
𝑡−1 = 𝐷(𝑏𝑡−1) 

𝑧𝑡−1
𝑆 ~𝑞𝑆

𝑡−1|𝑡
= 𝐷(𝑏𝑡 , 𝑧𝑡

𝐵) 

𝑧𝑡
𝑇~𝑝𝑇

𝑡|𝑡−1
= 𝐷(𝑧𝑡−1

𝑆 ) 

𝑝𝐷 = 𝐷(𝑧𝑡
𝐵) 

 

𝐿𝑡−1 = 𝐾𝐿(𝑞𝑆
𝑡−1|𝑡

|𝑝𝐵
𝑡−1) 

𝐿𝑡 = log 𝑝𝐵
𝑡 (𝑧𝑡

𝐵) − log 𝑝𝑇
𝑡|𝑡−1(𝑧𝑡

𝑇) 

𝐿𝑥 = − log 𝑝𝐷(𝑥𝑡) 

𝐿𝑜𝑠𝑠 = 𝐿𝑡−1 + 𝐿𝑡 + 𝐿𝑥 . 

(3) 

2.2. TDVAE-DSGE 

As mentioned earlier, a standard New Keynesian DSGE 

model can be reduced to a linear state space 

representation, by solving its log-linearized equilibrium 

conditions via the method like Sims [2001] or Klein 

[2000]. In other words, a standard DSGE model can be 

summarized into a pair of the transition matrix on state 

variables and the observation (decoder) matrix to 

translate the states to observations. The values of those 

matrices are fully determined by the structural (deep) 

parameters of the DSGE model to be used.  

The idea of this paper is to transplant those transition and 

decoder matrixes of a standard New Keynesian DSGE 

model into the aforementioned TDVAE framework. 

More precisely, means of a state transition probability 
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𝑝𝑇
𝑡|𝑡−1

 and a decoder probability 𝑝𝐷 in TDVAE are to 

be calculated based on the given transition matrix 𝐹 and 

the decoder matrix 𝑃 of a reduced DSGE model. The 

system is described as follows: 

𝑏𝑡 = 𝐿𝑆𝑇𝑀(𝑏𝑡−1, 𝑥𝑡  ) 

𝑧𝑡
𝐵~𝑝𝐵

𝑡 = 𝐷(𝑏𝑡) 

𝑝𝐵
𝑡−1 = 𝐷(𝑏𝑡−1) 

𝑧𝑡−1
𝑆 ~𝑞𝑆

𝑡−1|𝑡
= 𝐷(𝑏𝑡 , 𝑧𝑡

𝐵) 

 

𝜇𝑧𝑇 = 𝐹𝑧𝑡−1
𝑆  

log 𝜎𝑧𝑇 = 𝐷(𝑧𝑡−1
𝑆 ) 

𝑧𝑡
𝑇~𝑝𝑇

𝑡|𝑡−1
= 𝑁(𝜇𝑧𝑇, 𝜎𝑧𝑇) 

 

𝜇𝑥 = 𝑃𝑧𝑡
𝐵 

log 𝜎𝑥 = 𝐷(𝑧𝑡
𝐵) 

𝑝𝐷 = 𝑁(𝜇𝑥, 𝜎𝑥). 

(4) 

This can also be trained by using the same ELBO loss 

function. Hereafter, this approach is named as 

TDVAE-DSGE.  

2.3. The DSGE model to be used 

The DSGE model to be used is a standard 

New-Keynesian model of Smets and Wouters [2007], 

which over the past decade has been a standard tool in 

mainstream macroeconomic research.  

This model includes seven structural (i.e. theoretically 

identified) shock processes, namely (1) a productivity 

shock, (2) a shock to household (investor) preferences 

(the time discount rate), (3) a shock to exogenous 

demand (government spending and foreign demand), (4) 

a shock to capital investment efficiency, (5) a price 

mark-up shock, (6) a wage mark-up shock, and (7) a 

discretionary monetary policy shock.  

Given the materialized values of seven shocks and the 

deep parameters specifying behaviors of agents, the ten 

variables of interest, namely capital, labor inputs, 

production, consumption, investment, the real capital 

yield, the real capital price, the inflation rate, the real 

wage, and the nominal interest rate, are determined 

through the structural equations which represents 

optimizing behavior of the six types of economic agents, 

namely households (end investors), employment 

agencies, intermediate good producers, final good 

producers, capital producers, and the public sector 

(central bank and government).  

By solving the structural equations into reduced forms, 

the DSGE is expressed in state-space representation, and 

its deep parameters, endogenous variables, and shock 

processes are simultaneously estimated by a Particle 

Filter algorithm so as to obtain the best replication of 

actual fluctuations in macroeconomic data. This paper 

denotes this standard estimation procedure as PF-DSGE 

for the later use. Obtaining filtered time series of these 

structural shock processes will enable us to identify the 

exogenous causes of macroeconomic fluctuations.  

One major distinction of TDVAE-DSGE from PF-DSGE 

is an existence of belief state, which enables to compress 

a large number of observable data in efficient way 

through the LSTM network and conditions the filtering 

probability of state variables (i.e. shock processes). There 

are some pieces of research tackling data-rich estimation 

of a DSGE model through Dynamic Factor Model 

(Iiboshi [2015] for example), which reported, however, 

no significant information gain by expanding dataset 

more than core observable variables. The factor loading 

matrix of DFM, which is linear and only considers 

contemporaneous correlations, seems too restrictive to 

extract potentially valuable information from the big 

dataset.  

2.4. TDVAE-DSGE with correction term 

In the framework of TDVAE-DSGE described above, a 

law of motion (or transition model) of state variables is 

fully specified by the values of corresponding DSGE 

matrix. As discussed in the first section, this might be too 

restrictive to capture potentially non-stationary nature of 

the economic data. In other words, actual developments 

of economy (or true data generation process) could often 

deviate from the assumptions of a plain-vanilla linearized 

New Keynesian DSGE model. In order to address this 

problem, I choose to insert a neural-net-based correction 

term into the transition model of TDVAE-DSGE. Thus, 

the transition probability with a correction term is 

described as follows: 

[𝐶𝑇, log 𝜎𝑧𝑇]  = 𝐷(𝑧𝑡−1
𝑆 ), 

 𝜇𝑧𝑇 = 𝐹𝑧𝑡−1
𝑆 + 𝐶𝑇, 

𝑧𝑡
𝑇~𝑝𝑇

𝑡|𝑡−1
= 𝑁(𝜇𝑧𝑇 , 𝜎𝑧𝑇). 

人工知能学会研究会資料 
SIG-FIN-024

4



(5) 

With its non-linear nature of a neural network, the 

correction term 𝐶𝑇 could help to capture flexibly the 

residual dynamics of state variables, which accounts for 

the movement of observed data not identified by the 

DSGE model. Hereafter, this modified structure is 

denoted as TDVAE-DSGE-CT.  

 

3. Empirical Results 

This section compares performances of the models 

introduced above and some benchmarks with regard to 

forecasting back-test. Precisely, following three versions 

of TDVAE-DSGEs and three benchmarks are tested on 

the equal-footing basis.  

(1) TDVAE-DSGE-7V (7V): this version of 

TDVAE-DSGE uses only the seven core 

observation variables (i.e. production, consumption, 

investment, labor input, wage, price, interest rate) as 

inputs to construct belief states.  

(2) TDVAE-DSGE-DR (DR): this is the data-rich 

version of TDVAE-DSGE where belief states 

compress a large number (more than 500) of 

economic and financial data in addition to the seven 

core variables. Decoder probability (i.e. observation 

likelihood) remains to be calculated with the seven 

core variables.  

(3) TDVAE-DSGE-CT (CT): this version has a 

correction term in its transition model as explained 

in the section 2.4, where belief states are 

constructed from the big data as with the DR 

version.  

(4) VAR: a simple reduced-form VAR (2) model, 

augmenting the core seven variables.  

(5) PF-DSGE (PF): the estimated DSGE model by 

particle filter explained above. Forecasts are 

constructed by randomly sampled structural shocks 

for quarters ahead.  

(6) LSTM: a standard LSTM network taking lagged 

values of the seven core variables to explain the 

current values of them, intended to capture a 

potentially non-linear low of motion.  

In a back-test procedure, forecasts for real GDP by each 

model have been assessed, and all generated with no 

future information except for the use of revised data. 

Back-test periods are from 1Q2011 to 4Q2018, in which 

all models are re-estimated by every quarter, with the 

data that had been available at the release date of GDP 

statistics. The corresponding release dates to the values 

of each economic indicators are corrected from the 

sources, but for the periods of unavailable pasts, 

complemented by the largest days of delay in the recent 

known release dates.  

For every quarters of back testing, forecasts up-to eight 

quarters ahead were generated after the re-estimation. All 

models take real GDP in the form of log-detrended level, 

so do their forecasts. In order to assess the performance 

of each model, Root Mean Squared Error (RMSE) is 

calculated for two, four and eight quarters-ahead 

forecasts. When evaluating forecasts of a level variable 

with some persistency, it is known that simple 

autoregressive model like AR(1) or even side-slide 

forecasts could record a high RMSE accuracy, which is 

so called echo-effects. The actual forecasts by PF-DSGE 

and VAR indeed exhibited the patterns of side-slide, in 

which their RMSEs are thought of too low with the 

existence of such echo-effects. Therefore, I choose to 

additionally test the performances in terms of quarter by 

quarter (qoq) changes. In this case, RMSEs up-to two, 

four or eight quarters ahead are calculated first at each 

period, and then averaged over all back-test periods. All 

those results are summarized in Table 1. Overall score of 

each model is evaluated by the ranking over four patterns 

of those RMSEs.  

Table 1. Summary of the back-test results 

 

 

4. Discussions 

4.1. Role of correction term 

Assessing with the overall ranking, the best score was 

achieved by TDVAE-DSGE-CT (CT) as anticipated. 

This outperformance of CT against TDVAE-DSGE-DR 

(DR) suggests that the correction term constructed 

RMSE 1Q2011 to 4Q2018
PF VAR LSTM TDVAE-7VTDVAE-DRTDVAE-CT

q+2 1.40 1.49 1.48 2.09 1.58 1.03
q+4 1.70 2.31 1.88 2.26 1.57 1.05
q+8 0.82 3.05 2.29 2.11 2.09 0.96

qoq_2q 0.75 0.71 0.63 0.55 0.49 0.48
qoq_4q 0.71 0.80 0.68 0.60 0.59 0.62
qoq_8q 0.68 0.74 0.65 0.63 0.64 0.64

Total Ranking 4 6 5 3 2 1
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through neural networks played an important role to 

capture a potentially non-linear dynamics (or underlying 

data generation process) of the state variables, 

corresponding to the structural shocks of macroeconomy 

under the DSGE restriction.  

Comparing the actual filtered values of the seven state 

variables under CT and DR, some variables show acute 

differences in particular periods despite the considerable 

resemblances globally for most variables. Concretely, the 

productivity process under CT shows a peak and trough 

during the late 1980s and early 1990s (the Japan's 

financial bubble and burst), and also a much deeper 

correction in 2008-2009 (the Lehman shock), which are 

not appeared in the process under DR. The difference 

between CT and DR is also visible in the wage-markup 

process in most periods. In addition, the process of 

monetary policy shock has been broadly non-similar.  

These may suggest the modeling of financial sector, 

labor market, and monetary policy in the plain-vanilla 

DSGE of Smets and Wouters [2007] are not adequate to 

explain the underlying data generation process of Japan's 

macroeconomy during the corresponding periods. Indeed, 

the importance of richer description of financial sector 

was also emphasized in Hasumi et.al [2018].  

4.2. Data-rich beliefs 

The better performance of TDVAE-DSGE-DR (DR) to 

TDVAE-DSGE-7V (7V) implies that the use of richer 

dataset to form belief states leads to more accurate 

inference of the state variables, and their dynamics. The 

7V did not so significantly outperform the standard 

particle filter estimation of DSGE (PF) in the overall 

accuracy ranking, which suggest that the advantage of 

TDVAE methodology tends only materialized with a 

richer dataset. These results imply that non-linear 

flexible structure of LSTM could efficiently extract 

valuable information from large number of economic 

indicators, which is not contained in the seven core 

observable variables.  

4.3. Theoretical restriction 

Both the higher accuracy of TDVAE-DSGEs against 

LSTM and the same of PF-DSGE against VAR suggest 

that theoretical restrictions by a DSGE model certainly 

enhanced the out-of-sample forecasting performances of 

Japan's GDP, regardless of the type of models, namely, 

neural networks or linear autoregression.  

Figure 1. Filtered values of the states by TDVAE-DSGE-CT vs. DR 
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5. Conclusion 

This paper examined the possibility of combining a 

DSGE model and neural networks to supplement each 

other, with regard to out-of-sample forecasts for 

economic variables. The aim is to build a model with 

theoretical interpretability and state-of-the-art 

performance. The novel neural-net structure of TDVAE 

(Temporal Difference Variational Auto-Encoder) 

proposed by Gregor et.al [2019] enables to realize this 

idea. TDVAE virtually replicates a Gaussian stochastic 

state-space model by combination of neural networks. 

Because a DSGE model provides theoretical restrictions 

on the state transition and observation matrices of a 

linear state-space model, I choose to transplant those 

DSGE-oriented matrices into the formulations of state 

transition and observation probabilities in TDVAE. This 

TDVAE-DSGE approach certainly achieved the superior 

performance in the task of out-of-sample forecasts on 

Japan's real GDP during 1Q/2011 and 4Q/2018. 

References 

[１] Borovkova, S. and Tsiamas, I. (2019). An ensemble of 

LSTM neural networks for high‐frequency stock market 

classification. Journal of Forecasting, 2019;1-20. 

https://doi.org/10.1002/for.2585 

[２] Buesing, L., Weber, T., Racaniere, S., Ali Eslami, S., 

Rezende, D., Reichert, D., Viola, F., Besse, F., Gregor, K., 

Hassabis, D., and Wierstra, D. (2018). Learning and 

querying fast generative models for reinforcement 

learning. arXiv preprint arXiv:1802.03006. 

[３] Chen A., Leung M.T., and Daouk H. (2003). Application 

of neural networks to an emerging financial market: 

forecasting and trading the Taiwan Stock Index. 

Computers & Operations Research, 30: 901-923. 

[４] Del Negro, M., Eusepi, S., Giannoni, M., Sbordone, A., 

Tambalotti, A., Cocci, M., Hasegawa, R., Linder, and M. 

(2013). The FRBNY DSGE model, Staff Reports 647. 

Federal Reserve Bank of New York. 

[５] Rochelle, M., and Refet, G. (2010). How useful are 

estimated DSGE model forecasts for central bankers?. 

CEPR Discussion Papers, No 8158.  

[６] Fischer, T., and Krauss, C. (2017).Deep learning with 

long short-term memory networks for financial market 

predictions. FAU Discussion Papers in Economics 

11/2017. 

[７] Gelfer, D.G. (2016). Financial crises and labor market 

dynamics: evidence from a data-rich DSGE model. 

Mimeo. 

[８] Gregor, K., Papamakarios, G., Besse, F., Buesing, L., and 

Weber, T. (2019). Temporal Difference Variational 

Auto-Encoder. arXiv preprint arXiv:1806.03107. 

[９] Hasumi et.al [2018] 

[１０] Hasumi, R., Iiboshi, H., Matsumae, T., and 

Nakamura, D. (2018). Does a financial accelerator 

improve forecasts during financial crises?: Evidence from 

Japan with Prediction Pool Methods. MPRA Paper, No. 

85523.  

[１１] Herbst, E., and Schorfheide, F. (2012). Evaluating 

DSGE model forecast of comovements. Journal of 

Econometrics, 171(2), 152-166. 

-1.5

-1

-0.5

0

0.5

1

1.5

1
2

/1
9
8

0

1
2

/1
9
8

2

1
2

/1
9
8

4

1
2

/1
9
8

6

1
2

/1
9
8

8

1
2

/1
9
9

0

1
2

/1
9
9

2

1
2

/1
9
9

4

1
2

/1
9
9

6

1
2

/1
9
9

8

1
2

/2
0
0

0

1
2

/2
0
0

2

1
2

/2
0
0

4

1
2

/2
0
0

6

1
2

/2
0
0

8

1
2

/2
0
1

0

1
2

/2
0
1

2

1
2

/2
0
1

4

1
2

/2
0
1

6

Price mark-up _CT

Price mark-up _DR

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1
2

/1
9
8

0

1
2

/1
9
8

2

1
2

/1
9
8

4

1
2

/1
9
8

6

1
2

/1
9
8

8

1
2

/1
9
9

0

1
2

/1
9
9

2

1
2

/1
9
9

4

1
2

/1
9
9

6

1
2

/1
9
9

8

1
2

/2
0
0

0

1
2

/2
0
0

2

1
2

/2
0
0

4

1
2

/2
0
0

6

1
2

/2
0
0

8

1
2

/2
0
1

0

1
2

/2
0
1

2

1
2

/2
0
1

4

1
2

/2
0
1

6

Wage mark-up _CT

Wage mark-up _DR (RHS)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
2

/1
9
8

0

1
2

/1
9
8

2

1
2

/1
9
8

4

1
2

/1
9
8

6

1
2

/1
9
8

8

1
2

/1
9
9

0

1
2

/1
9
9

2

1
2

/1
9
9

4

1
2

/1
9
9

6

1
2

/1
9
9

8

1
2

/2
0
0

0

1
2

/2
0
0

2

1
2

/2
0
0

4

1
2

/2
0
0

6

1
2

/2
0
0

8

1
2

/2
0
1

0

1
2

/2
0
1

2

1
2

/2
0
1

4

1
2

/2
0
1

6

Monetary policy _CT

人工知能学会研究会資料 
SIG-FIN-024

7



[１２] Iiboshi, H., Matsumae, T., Namba, R., and 

Nishiyama, S. (2015). Estimating a DSGE model for 

Japan in a data-rich environment. Journal of the Japanese 

and International Economies, vol. 36(C), pages 25-55. 

[１３] Klein, P., (2000). Using the generalized schur form 

to solve a multivariate linear rational expectations model. 

Journal of Economic Dynamics and Control, 24, 1405–

1423. 

[１４] Sims, C.A., (2001). Solving linear rational 

expectations models. Journal of Computational 

Economics, 20 (1–2), 1–20. 

[１５] Smets,F., and Wouters, R. (2007). Shocks and 

frictions in US business cycles: A Bayesian DSGE 

approach. American Economic Review, 97 (3): 586-606. 

DOI: 10.1257/aer.97.3.586. 

 

人工知能学会研究会資料 
SIG-FIN-024

8




