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Abstract
General domain pretrained large-scale lan-
guage models, such as BERT and GPT3, have
achieved state-of-the-art results among numer-
ous NLP classification and generation appli-
cations. This pretraining technology is also
willing to be used in vertical domains, such
as finance. The downstream applications in-
clude financial event extraction from news,
summarization, and causal inferencing. In
this paper, we propose large-scale pretrained
BERT models for financial domain in En-
glish and Japanese languages. The origi-
nal datasets come from professional financial
news. We empirically study the factors of
sub-word vocabulary set, model size and their
impacts to the downstream financial NLP ap-
plications. The code and pretrained models
are released from https://github.com/
NVIDIA/Megatron-LM.

1 Introduction

Large-scale pretrained contextual language mod-
els (Qiu et al., 2020), such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), GPT (Radford
et al., 2018), ALBERT (Lan et al., 2020), Mega-
tron (Shoeybi et al., 2019), and GPT3 (Brown et al.,
2020), have achieved outstanding results in numer-
ous classification and generation applications of
NLP field. Leveraging the encoder blocks of trans-
formers (Vaswani et al., 2017), BERT (Devlin et al.,
2019) proposed the prediction of masked words or
subwords and next sentences. These pretrained
models only require large-scale textual documents
as inputs without any additional manual annota-
tions. Parameters include the number of heads used
in multi-head self-attentions and the hidden size
of point-wise feed-forward networks used in trans-
former’s encoder blocks. Comparing with this non-
autoregressive framework of utilizing the encoder
blocks, GPT models employ the decoder blocks
of transformers. That is, a sentence is taken as in-
put and the model is trained by predicting its word

step-by-step, one-by-one. In order to predict the
next word, mask tensors are constructed by limit-
ing the usage of left-hand-side visible words in a
sentence. A list of NLP applications, such as ma-
chine translation (Stahlberg, 2020), machine read-
ing comprehension (Zhang et al., 2020), document
summarization (El-Kassas et al., 2021), sentiment
analysis (Zhang et al., 2018), have achieved signifi-
cantly better results in recent years, thank to these
large-scale pretrained models (such as NVIDIA’s
Megatron GPT2 which contains 8.3 billion parame-
ters and OpenAI’s GPT3 which contains 160 billion
parameters).

On the other hand, vertical domains, such as
bioinformatics and finance, have large collections
of textual documents, such as technical research pa-
pers, analysis reports and financial news. These
domains require domain specific knowledge to
tackle down-stream applications. In bioinformat-
ics domain, there are researches such as NVIDIA’s
BioMegatron (Shin et al., 2020) and Microsoft’s
domain-specific language models for Biomedical
NLP (Gu et al., 2021). We focus on building
finance-domain pretrained language models in this
paper. In this finance domain, there is limited
work on quite limited languages. FinBERT (Liu
et al., 2020) was proposed for financial text-mining
in English language. 61GB textual data are col-
lected from English wikipedia and BooksCorpus,
FinancialWeb (13GB, 3.31B words), Financial-
Web (24GB, 6.38B words), YahooFinance (19GB,
4.71B words), and RedditFinanceQA (5GB, 1.62B
words). In addition, FinBERT has two versions,
LARGE and BASE, which share the same model
settings of transformer and pre-training hyper-
parameters as BERT. NTT-data is one of the few
companies that are known of developing financial
BERT for Japanese language1. NTT-data used
12.7GB textual data with a vocabulary size of 32K

1https://www.nttdata.com/jp/ja/news/
release/2020/071000/
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FinBERT NTT-Data FinMegatron
Language En Jp En, Jp
Vocab 30K 32K customize
Parameter 330M 330M customize
Model open No No Yes
Code open No No Yes
Model parallel NA NA Yes

Table 1: Comparison of BERT in financial domain.

that includes both words and sub-words (such as
Japanese characters, kana). The default setting
of BERT-LARGE is used in NTT-data’s financial
BERT as well.

2 FinMegatron Configurations

We name our pretrained language models in finan-
cial domain as FinMegatron, in which Fin stands
for financial domain and Megatron2 (Shoeybi et al.,
2019) is our general pretrained language models
with model parallelism with open-source code writ-
ten in PyTorch3, support mixed precision training
(fp16 and fp32) 4 under Apex5 and parallelism of
data, pipeline and tensor.

Table 1 lists the differences of our FinMegatron
and two baselines, FinBERT (Liu et al., 2020) and
NTT-Data’s BERT. We support both English and
Japanese languages in which Japanese tokenizer
such as Mecab with IPAdict is integrated in our
code. In addition, we support customizing vocab-
ulary set so that vertical domain’s named entities
can be better covered by training Byte-Pair Encod-
ing (BPE)6 and WordPiece (Kudo, 2018) under the
given large-scale textual dataset.

In order to support customized vocabulary size,
we reuse the code build_vocab.py in Tohoku-U’s
BERT7 for general domain. For example, in our
Japanese BERT model, we set the vocabulary size
to be 40k.

Besides the traditional usage of mini-batch for
data-parallelism, we also leverage the tensor and
pipeline parallelism. Tensor parallelism means that
we can cut one tensor by its last dimension into
several tensors and each tensor allocated in one

2https://github.com/NVIDIA/Megatron-LM
3https://pytorch.org/
4https://docs.nvidia.com/deeplearning/

performance/mixed-precision-training/
index.html

5https://github.com/NVIDIA/apex
6https://en.wikipedia.org/wiki/Byte_

pair_encoding
7https://github.com/cl-tohoku/

bert-japanese

GPU. For example, if one tensor’s shape is (batch
size=b, sequence length=s, hidden size=h) and we
use two GPUs to respectively store half of it. Then
each GPU will have a tensor of (b, s, h/2). We
can define an activate function to implement this
forward cutting and backward gathering.

For example, to implement the multi-layer per-
ceptron (MLP) layer (i.e., affine linear projection
of from h to 4*h and then back to hidden-size
used in point-wise feed-forward layer) in trans-
former, we define two types of parallelism, column-
parallel and row-parallel. For an input tensor X ,
column-parallel linear layer performs Y = XA+b
where matrix A is separated by columns alike A =
[A1, A2] (when p=2). Then we have Y1 = XA1+b
and Y2 = XA2 + b. In forward process, X is not
changed and broadcast to each GPU, in backward
process, PyTorch’s all-reduce is performed to sum-
up tensor values from different GPUs and sync
their values to be the same and up-to-date. Typi-
cally, in the first affine linear projection from h to
4h, Ai will take a shape of (h, 4h/p) where p is the
number of parallel process or number of GPUs for
tensor parallelism. So we will have Yi’s shape of
(b, s, h) * (h, 4h/p) = (b, s, 4h/p). The second affine
linear projection is a row-parallel linear layer with
original A to be (4h, h) and here cut by rows to be
(4h/p, h). This means that now A is cut by rows
and A = [A1, A2]

T (when p=2).

To implement the tensor-parallelism for the
multi-head self-attention layer, we can first separate
by the number of heads and then each head’s tensor
can be further paralleled by being separated follow-
ing the final hidden size dimension. There are four
linear layers in the multi-head self-attention layer,
the first three linear layers are to project the input
X into Q, K, and V tensors and the forth is a sim-
ple linear projection of the output of the multi-head
self-attention tensor. We can combine the first three
linear layers into one layer with weight matrix to
be from the original 3*(h, h) to now (h, 3h). Then
we can make use of the column-parallelism linear
layer used in MLP layer. For the forth layer, it is
actually a row-parallelism layer used in MLP layer.

There are 24 encoder blocks in BERT-LARGE
and each block contains a multi-head self-attention
layer followed by a point-wise feed-forward layer.
We can further perform pipeline-parallelism to sep-
arate each For example, splitting a model with 24
transformer layers across 4 stages would mean each
stage gets 6 transformer layers each. Through this
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English Japanese
file size 15GB 13GB
documents 5,516,610 5,221,226
sentences 97,122,204 40,467,789
tokens 2.38B 1.06B
vocab 7.18M 364K
vocab-bert 30K 40K
model size 335M 346M

Table 2: Statistical Information of the English and
Japanese datasets for pre-training.

way, the forward and backward computing can be
paralleled across each stage.

In our BERT models, we also follow the default
settings of BERT-LARGE. The network contains
24 layers in which each layer contains a multi-head
self-attention layer and a point-wise feed-forward
layer with residual adding and layer normalization
included as well. We set the max position em-
bedding and maximum sequence length to be 512,
number of attention heads to be 16, hidden size to
be 1024. The whole dataset is separated into three
subsets: 94.9% for training, 5% for validating and
1% for testing.

3 Experiments

3.1 Datasets

We extract finance related documents from large-
scale multilingual datasets, such as Google’s C48

and Facebook’s CC-1009 which are all originally
collected from the web. In order to perform the
filtering, we keep a large finance word list for each
language. The word lists are collected from the
web.

Table 2 lists the major statistical information
of the English and Japanese datasets of financial
domain. An independent document stands for a
complete web page or a whole news or even a
whole analysis report.

3.2 Training Details

Figure 1 and 2 illustrates the train/validation
losses during training the BERT-LARGE mod-
els. We set 1 million iterations (with time cost-
ing to be 190ms/iteration) for the English dataset
and 1 million iterations (with time costing to be
200ms/iteration) for the Japanese dataset.

For the English training, we employ a NVIDIA

8https://www.tensorflow.org/datasets/
catalog/c4

9http://data.statmt.org/cc-100/
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Figure 1: Training and validating losses for the English
finanical BERT-LARGE.

ì

í

î

ï

ð

ñ

ò

ó

ô

ì íììììì îììììì ïììììì ðììììì ñììììì òììììì óììììì ôììììì õììììì íìììììì

:���v������Zdr>�Z'��o}����
���]vXi�Xo}�� À�oXi�Xo}��

Figure 2: Training and validating losses for the
Japanese finanical BERT-LARGE.

DGX-1 workstation with 8 V100 cards10 (16GB
memory each, micro-batch size to be 4 and global
batch size to be 32), and for the Japanese training,
we employ a NVIDIA DGX-1 workstation with
4 V100 cards (16GB memory each, micro-batch
size to be 4 and global batch size to be 16). All
these workstations come from a large-scale DGX-
SUPERPOD11 in NVIDIA. In addition, note that
our open-source code is suitable of using large-
scale textual datasets as well to train on NVIDIA’s
large-scale clusters of DGX-SUPERPOD with as
many as 3,072 A100 GPUs12. The losses in En-
glish models drop from 6.5 around to less than 2
and finally at around 1.6 for training and 0.2 for
validating. Finally, the 1% test set’s loss is 0.224.
On the other hand, the losses in Japanese models
drop from 7 around to around 2 in both the training
and validating. Finally, the 1% test set’s loss is
1.648.

4 Conclusion

We have trained two BERT-LARGE BERT models
in English and Japanese for financial domain using
the Megatron open-source toolkit in NVIDIA. Our

10https://www.nvidia.com/en-us/
data-center/v100/

11https://www.nvidia.com/en-us/
data-center/dgx-superpod/

12https://github.com/NVIDIA/Megatron-LM
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code and model support both customized vocabu-
lary sizes and model paralleling among multi-GPU
of single-node and even multi-nodes. Considering
that this is still a work in progress, we will include
the training of GPT models as well for English and
Japanese financial domain. Finally, down-stream
NLP applications such as market understanding
(Wu, 2020) are also to be fine-tuned again with
these pretrained BERT models.
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