- バックアップ一覧
- 差分 を表示
- 現在との差分 を表示
- ソース を表示
- 025-12 へ行く。
- 1 (2020-08-24 (月) 14:44:36)
- 2 (2020-08-24 (月) 16:09:49)
- 3 (2020-10-07 (水) 08:15:24)
評価関数の可視化による株価予測モデルの汎用性評価 †
著者 †
坂下好希(東京大学), 中井悠貴(早稲田大学), 瀬之口潤輔(東京工科大学)
概要 †
When predicting stock prices with a complex model using machine learning or artificial intelligence, overfitting sometimes occurs, and the prediction accuracy expected in actual operation cannot be obtained. In such a model, the cost function is presumed to be steep and multi-modal, while in a model that maintains stable prediction results, the cost function is considered to be gradual and single-peaked. In this study, we first compared the performance of several stock price prediction models, and then visualized the cost function for each model using t-SNE. As a result, the model using Lasso regression, which had the highest performance, showed a gradual unimodal cost function, while the linear regression, which had relatively low performance, showed a steep and multi-modal shape. Visualizing the cost function using t-SNE can be an important index for evaluating the stability and versatility of a stock price prediction model.
キーワード †
t-SNE, cost function, visualization, versatility evaluation, wavelet, reducing dimension
論文 †
(10月7日以降に公表いたします)