024-23

2020-03-13 (金) 23:41:12 (191d) | Topic path: Top / 024-23

第24回研究会

強化学習を用いた期待効用ベースヘッジ手法

著者

上田翼(三井住友DSアセットマネジメント)

概要

Selling options is a popular investment strategy, which regularly receives a premium and, on the other hand, takes variance risk, especially negative fat-tail risk. Therefore, it is important for risk-averse investors to mitigate these types of risks by constructing hedge position in consideration of transaction costs. Main results of this research are as follows: (1) In a practical simulation, DDPG model with utility based reward suggests a better way of dynamic hedging compared to simple benchmarks. (2) As a real-world application to market data, this learned model successfully manages the short straddle portfolio of treasury futures options.

キーワード

Reinforcement learning, Dynamic hedging, Expected utility

論文

file20_SIG-FIN-24.pdf

添付ファイル: file20_SIG-FIN-24.pdf 295件 [詳細]
トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS