024-23

2020-01-31 (金) 16:52:37 (18d) | Topic path: Top / 024-23

第24回研究会

強化学習を用いた期待効用ベースヘッジ手法

著者

上田翼(三井住友DSアセットマネジメント)

概要

Selling options is a popular investment strategy, which regularly receives a premium and, on the other hand, takes variance risk, especially negative fat-tail risk. Therefore, it is important for risk-averse investors to mitigate these types of risks by constructing hedge position in consideration of transaction costs. Main results of this research are as follows: (1) In a practical simulation, DDPG model with utility based reward suggests a better way of dynamic hedging compared to simple benchmarks. (2) As a real-world application to market data, this learned model successfully manages the short straddle portfolio of treasury futures options.

キーワード

Reinforcement learning, Dynamic hedging, Expected utility

論文

(3月11日以降に公表いたします)

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS