024-09

2020-03-13 (金) 23:33:45 (20d) | Topic path: Top / 024-09

第24回研究会

銘柄属性と市場情報を用いた深層学習株式リターン予測モデルの予測根拠の分析

著者

小寺俊哉, 佐藤史仁(日興リサーチセンター), 坂地泰紀, 和泉潔(東京大学)

概要

近年,株式のリターン予測において,様々なファクターの中から予測に有用な特徴量を自動で抽出できる深層学習技術の応用研究がなされている.しかし,深層学習は計算過程が複雑で,人間にはその予測根拠の把握が難しく,意思決定に理由が求められる実務での利用において,解釈の困難さが課題とされることがある.一方,深層学習の解釈手法についても研究が行われており,深層学習において研究が盛んな画像分類等のタスクだけでなく,株価指数や個別株式等の資産価格リターン予測を行う深層学習モデルに対しても解釈を行う研究が行われている.本稿では,モデルの解釈に焦点を当て,個別株式リターン予測をタスクとした深層学習モデルについて,深層学習の解釈手法を用いて各入力値の寄与度を個別銘柄レベルで確認した.さらに,深層学習モデルの入力値に個別銘柄属性だけでなくマーケット指数等の市場情報を用いることで,銘柄属性と市場トレンドの2つの側面での分析を行った.

キーワード

資産運用, 深層学習, LRP, 解釈手法

論文

file08_SIG-FIN-24.pdf

添付ファイル: file08_SIG-FIN-24.pdf 87件 [詳細]
トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS