023-04

2019-10-03 (木) 10:15:35 (41d) | Topic path: Top / 023-04

第23回研究会

DSGEによるニューラルネットの正則化と経済予想

著者

塩野剛志(クレディ・スイス証券)

概要

This paper examines the possibility of combining a DSGE model and neural networks to supplement each other, with regard to out-of-sample forecasts for economic variables. The aim is to build a model with theoretical interpretability and state-of-the-art performance. The novel neural-net structure of TDVAE (Temporal Difference Variational Auto-Encoder) proposed by Gregor et.al [2019] enables to realize this idea. TDVAE virtually replicates a Gaussian stochastic state-space model through combination of neural networks. Because a DSGE model provides theoretical restrictions on the state transition and observation matrices of a linear state-space model, I choose to transplant those DSGE-oriented matrices into the formulations of state transition and observation probabilities in TDVAE. This TDVAE-DSGE approach certainly achieved the superior performance in the task of out-of-sample forecasts on Japan's real GDP during 1Q/2011 and 4Q/2018.

キーワード

Neural Network, DSGE, VAE, LSTM

論文

(10月9日以降に公表いたします)

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS