SIG-FIN-018-16

2017-02-15 (水) 09:11:35 (9d) | Topic path: Top / SIG-FIN-018-16

第18回研究会

Improvement of Support Vector Machine Applied to Limit Order Book

著者

Hayato Kijima(東邦大学大学院 理学研究科),Hideyuki Takada(東邦大学 理学部)

概要

Market participants place their limit/market orders by taking into account both the trajectory and current status of the limit order book. This behavior is based on the policy that the shape of the limit order book is quite informative for predicting future direction of a traded asset. In this paper, we employ Support Vector Machine combined with conformally transformed Gaussian RBF kernel to forecast the mid price dynamics. Our empirical studies show that the conformal transform methods improved the precision more than 3% in average compared to the standard Gaussian RBF kernel.

キーワード

Limit Order Book, Support Vector Machine, Riemannian metric, Conformal transformation

論文

(3月6日以降に公表いたします)

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS