2014-01-22 (水) 07:55:52 (1160d) | Topic path: Top / SIG-FIN-012-08


Deep Belief Network を用いた日経平均株価の予測に関する研究


小牧 昇平, 白山 晋(東京大学大学院工学系研究科)


In this study, we propose a new forecasting method of a financial time series based on Deep Belief Network (DBN) by enhancing the approach of the Chao et al. First, a new topology for a regression training is proposed. Second, we forecast a Nikkei Stock Average renewing a training term. Third, Self-Organized-Map (SOM) is introduced for reducing the computational time in DBN. It is shown by some experiments that some improved performance indexes can be obtained, and reduction of the computation time is achieved.



添付ファイル: fileSIG-FIN-012-08.pdf 11771件 [詳細]
トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS