019-19

2017-10-11 (水) 09:13:38 (61d) | Topic path: Top / 019-19

第19回研究会

ファンダメンタルファクターモデル(リターンモデル)における機械学習手法の応用可能性検証

著者

杉友盛佑(エピックパートナーズインベストメンツ株式会社), 南正太郎(あすかアセットマネジメント株式会社)

概要

Fundamental factor models are one of the important methods for the quantitative active investors (Quants), so many investors and researchers use fundamental factor models in their work. But often we come up against the problem that highly effective factors do not aid in our portfolio performance. We think one of the reasons why is that the traditional method is based on multiple linear regression. Therefore in this paper, we tried to apply our machine learning methods to fundamental factor models as the return model. The results show that applying machine learning methods yield good portfolio performance and effectiveness more than the traditional methods.

キーワード

factor model, multi factor model, decidion tree, SVM, Neural Network, Portfolio

論文

fileSIG-FIN-019-19.pdf

添付ファイル: fileSIG-FIN-019-19.pdf 329件 [詳細]
トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS